
Magnolia: An Efficient and Lightweight Keyword-based Search Service in DHT
based P2P Networks

Ashish Gupta, Manan Sanghi, Peter Dinda. Fabian Bustamante
Computer Science Department, Northwestern University

Evanston, IL - 60201
Email: {ashish,manan,pdinda,fabianb}@cs.northwestern.edu

1 Introduction

DHT-based P2P systems like Chord [4], Pastry [5],
Tapestry [7], Kademlia [3]) improve over unstructured
P2P systems like Gnutella by providing high scalability for
large number of participating nodes as well as determinis-
tic and efficientO(log(n)) lookup and routing. The over-
lay topology is controlled much more tightly and files are
placed at precise locations as determined by hashing func-
tions used in each system. Their lookup and search service
provides for looking up and routing exactly specified file
identifiers using a distributed routing architecture whichcan
reach its target node deterministically inO(log(n)) time
with very high probability. This is a big improvement over
flooding techniques used in traditional unstructured tech-
niques, greatly reducing latency, node and link stress in
the network. However, this performance comes at a price:
their inability to support inexact searches in their original
form. Indeed this is of vital important as evidenced by the
extremely popular content-distribution and file sharing ap-
plications, in the domain of unstructured P2P systems e.g.
Gnutella and Kazaa. In these systems users can search for
vast amount of media files or documents with only partial
specification of the file title or other attributes. DHT-based
systems search for documents based on the documentID
which is derived from hashing an entire file attribute like
its title. With only partial information it is not possible to
reconstruct the hash key for the file.

Some recent proposals for keyword search in DHT sys-
tems have suggested storing documents or pointers to these
documents corresponding to a particular keyword to a node
with nodeID corresponding to the keyID. A keyID is com-
puted by computing h(keyword) for each keyword in a doc-
ument’s attribute like its title and the tuple (keyword, docu-
mentPointer) is stored at the nodeID which corresponds to
this keyID. Composite keyword search can then be made
possible by computing the hashes for the search keywords
and visiting corresponding nodes to fetch all results which
contain the keyword. The results may be processed in the

network for operations like OR or AND before returning
the final results to the user. While this approach provides
correctness and works for simple scenarios, we argue that
this approach is not aligned with the goals for which DHT-
based systems are orignally intended for namely scalabil-
ity, low and bounded performance, resilience which takes
into account high churn in end host P2P systems, and load
balancing in terms of key distribution as well as traffic in
the network. Storing all the documents corresponding to
a single keyword at one of the nodes can result in many
problems: 1) For very large scale systems, containing bil-
lions of documents, millions of documents corresponding
to a common keyword can end up on a single node, a sin-
gle node thus becoming responsible for for a large num-
ber of document pointers. Depending on the distribution
of keywords, distribution of these document pointers can
be heavily skewed over the nodes in the network. While
heterogeneity-aware proposals can alleviate this to some de-
gree, the imbalance can be large enough not be addressed
by choosing the ”right” node for each keyword. 2) If a node
fails (high frequency failures are common and a basic as-
sumption in end host P2P systems), all documents corre-
sponding to keyword(s) stored on this node are removed
from the network, hampering future searches. This is es-
pecially problematic if the ”popular” nodes storing docu-
ments for popular keywords fail. It has been shown before
that the keyword popularity is highly skewed in searches.
3) Nodes can be swamped with searches for these popular
keywords creating routing hotspots (resulting from routing
large number of large number of messages to a single des-
tination, which can take some selected routes) as well as
query hotspots in the P2P network.

Unstructured P2P systems are less affected by some of
these problems, especially dependence on a single node af-
fecting reliability, hotspots or balancing of documents but
at the cost of disseminating much larger and unbounded
amounts of traffic and indeterministic performance. Our
goal in this paper is create a DHT-based P2P architecture
which is not plagued by the fore-mentioned problems while

1

providing low and bounded values for routing, number of
nodes visited and traffic generated for a single query. We
believe that a major reason for some of these problems is
to use the previous DHT proposals as a basic primitive and
building a search service on top of that. This limits the abil-
ity to provide boundedlog(n) routing hops and scalability
while dealing with these problems at the same time.

This paper proposes a simple DHT architecture Mag-
nolia which enables keyword search in DHT-based sys-
tems. Our context in this paper is searching for media
files just like in unstructured P2P systems. For example,
a user searching for ”mystery building” should fetch all
songs containing these words e.g.S̈arah Mclachlan Build-
ing a Mysterÿ. It also supports simple Boolean operators
OR and AND, case insensitive search, exact phrase search
and multiple search attributes for a document e.g. Title, Au-
thor, Conference for a research paper. We believe this is
a popular and useful model for searching in P2P systems
as evidenced by usefulness and popularity of systems like
Gnutella and Kazaa.

Our techniques are based on introducing a novel hash-
ing method called Modular Hashing and new routing and
lookup techniques which use Modular Hashing and take
into account routing and lookup for keywords in a title.
Modular hashing constructs a hash key based on individ-
ual key words in the document title rather than the treat-
ing the whole title as one unit. Modular hashing enables
routing possible for a full filename even if some of the
key words are specified, while maintaining constant rout-
ing state at the P2P nodes which is a constant multiple of
the routing state kept in traditional DHT systems. The in-
termediate nodes than route each individual keyword sepa-
rately using a modified routing and location protocol until
it reaches the file containing the word with high probability.
Our goals while providing the facility of keyword search is
to provide good scalability and performance properties for
the system. Specifically, Magnolia can scale to a system
with millions of nodes with low and provable probabilistic
bound on amount of traffic generated and number of nodes
visited. It returns results with a boundedO(log(n)) num-
ber of hops from the originating client and the routing state
maintained per node is constant and does not depend on the
number of documents in the system.

One of the advantages of our contributions is that it is
very lightweight and is not a higher layer built on top the
pre-determined DHT substrate for searching and indexing
all the documents. It is difficult to provide good perfor-
mance and scalability bounds when a service assumes an-
other lower service as a basic primitive as the service on the
upper layer then must get around any issues in the lower
layer instead of focusing on fixing them. In this paper we
use the context of Chord to describe the working of Magno-
lia. However, these techniques are DHT substrate indepen-

dent and can also be integrated with other DHT approaches
like Tapestry and Pastry.

2 Related Work

Some unstructured P2P systems proposals try to improve
performance by limiting searches to a fraction of popula-
tion. This fraction may still be large to produce satisfactory
results and since their is little control over placement of keys
or documents, only a random sampling of documents may
be returned. Our proposal tightly bounds the numbers of
nodes visited for keyword searches while providing to abil-
ity to search for rare documents also. There is control over
where the document keys are placed in the network, and the
proposed DHT routing architecture in deterministic number
of hops and traffic generated.

In pSearch [6], an architecture for semantic based search
for documents is proposed based on the popular VSM (Vec-
tor Space Model) and LSI (latent semantic indexing) mod-
els for semantic matching. It proposes distributed versions
of these methods suitable for P2P systems, without any cen-
tralized dependency. It strives to provide good load balanc-
ing using heuristic mechanisms. The performance numbers
in terms of traffic produced, number of hops and numbers
of nodes visited are not tightly bounded and the number of
nodes visited could be upto 0.4 to 1% of the total number of
nodes for good accuracy, upto 10,000 nodes for a 1 million
node P2P network. It can also suffer from node overload
for popular keyword searches as for a single key there is no
deterministic distribution of storage as well as lookup over-
head. The authors suggest the possibility of replication of
keys in the network to deal with any hotspots in the network.

In Bauer et al [1] suggest a distributed method to support
SQL like queries over any properties of the document. Their
method hashes a document property to a propID and stores
all documents corresponding to the same property value on
the node corresponding to propID. This would suffer from
poor load balancing and resilience for popular queries as de-
scribed previously. The routing also takes multiplelog(n)
DHT routing steps, which can be large for very large net-
works. It also involves transmitting large sets of interme-
diate final results from one node to another resulting in po-
tentially large amount of traffic. Lack of an evaluation or
analysis of performance or scalability makes the latency, re-
silience and scalability implications unclear.

In Garces-Erice et al [2], a distributed indexing scheme
is proposed, where queries are specified as values over sep-
arate fields of a document like Title or author. Their ap-
proach is store a hierarchial index structure distributed over
the P2P nodes where various possible incomplete queries
for a document are generated, indexed and linked to more
complete versions of that query (which completes other in-
formation in the field). This process is repeated recursively

2

until the index entry arrives at a complete descriptor of the
document , when the document can be retrieved. Besides
possibly building huge indexes for a large number of doc-
uments (since for a document, many possible incomplete
queries are possible), their routing requires take much more
time with multiplelog(n) DHT routing steps. Also, a single
descriptor is mapped to a single node in the system, result-
ing in node overload and resiliency problems as described
previously. Also, it is not clear if it can be efficiently ex-
tended to support individual or group keyword search for a
particular field e.g. a certain keyword within a title. They
also use caching schemes to respond faster to queries which
have been popular in the past.

3 System Model and Problem Formulation

3.1 The DHT System

By DHT-based Peer to Peer systems we refer to systems
like Chord, Pastry, Tapestry, Kademlia, Viceroy which have
several well defined properties. Some of their important
properties are: 1. Each document maps to a unique node
in the system. Their mapping methods also achieve good
load balancing of keys over the entire set of nodes. 2. They
provideO(log(n)) routing and lookup time for any object
in the system. 3. Routing state kept at each node is con-
stant and independent of the number of nodes or documents
stored in the system Their basic approach is to assign unique
IDs to nodes as well as documents via hashing a node at-
tribute (e.g. IP address) and a document attribute (e.g. title)
to a unique key. Their routing design then provides to locate
the node holding a document given its key. These systems
mainly differ in the way they route a request to the final
node. The routing design also affects their ability to handle
high instability inherent in end host P2P systems.

In this paper we use the example of Chord to illustrate
how our methods can be incorporated into an existing DHT
system. The next section gives a very brief description of
routing in Chord, the part essential for understanding our
later discussions.

3.1.1 A brief look at Chord

Figure 1 shows how routing works in Chord. For efficient
routing each Chord node maintains a finger table where en-
try i points to a successor noden + 2i. For a noden to
perform a lookup for keyk, the highest noden′ which lies
betweenn andk is identified. If such a node exists, the
lookup is repeated fromn′, otherwise the successor ofn

is returned which is maintained in a separate finger table.
The figure shows how a key corresponding to 33 would be
routed in Chord.

1

7

19

11

27

44

42

48

74

45

1+20
�

3

1+24
�

19

1+25
�

44

1+26
�

74

….

n
Routing for documentID = 33 in
Chord starting from node 1

19+20
�

27

19+23
�

44

19+24
�

44

19+25
�

74

n

19+21
�

27

Figure 1. Routing in Chord using Finger Ta-
bles. Each node also maintains a successor
list which is not shown in the figure

3.2 Document Model and Problem Description

In this paper, we consider a document storage and shar-
ing application where different users store files and other
users can retrieve them by searching for them in the P2P
system. This is similar in functionality to Gnutella or
Kazaa. The system is used to store files in a distributed
and resilient fashion which can be later retrieved given its
identification. Keeping in mind the popular model prevalent
today, in this paper we assume the identification to be of the
form of a filename which describes its title. Our approach
is also extendible to multiple attributes of a file e.g. MP3
files have ID tag information containing title, artist, album
and genre of each song. Users can search based on partial
knowledge of any field. In our initial discussions we mainly
focus on searching on one attribute i.e. the title to explain
our approach. Later we describe how it can be easily ex-
tended to support multiple tags.

A title w is assumed to be composed of multiple key-
wordsw1.w2.w3...wn where the keywords are separated by
some delimiter like space, hyphen or underscore. There is
no requirement any specific delimiter but only require that
there be some way to identify keywords in the title. The de-
sign of our system imposes an upper bound on the number
of keywords. The length of each keyword is unrestricted.
The upper bound is an adjustable parameter which can be
varied by adjusting other parameters as we describe below.

3

A user query is defined byQ = q1 OPq2 OPq3 ... OP
qk whereqi is one of these a) a keyword b) an exact phrase
P consisting of multiple keywords. Exact phrase search-
ing enables ordered AND searches for multiple keywords.
Example ”building a” will match ”Building a Mystery” but
not ”A building without windows”. OP defines a boolean
operator OR or AND. We also want to support queries for
multiple attributes as discussed in the last section. A multi-
attribute query would be of the formQmulti = attribute1 :
q1OP...OPqk attribute2 : q1OP...OPqk Our goal is
to design a system which can retrieve all documents point-
ers with high probability which satisfy a query Q with the
following goals:

1. Performance: The system should be able to return
replies withinO(log(n)) hops of the originating client
node.

2. Scalability: The number of nodes visited and traf-
fic generated per query should be low and bounded.
Moreover, these should be adjustable depending on the
scale of the system and other requirements.

3. Load Balancing: For popular keyword searches, a sin-
gle node should not be swamped by traffic but should
be spread out over a spread of nodes. In case of node
failures, the search capabilities for any of the keywords
should not be affected as no node stores all document
pointers for a single keyword. The document pointers
and documents should be well balanced in the system
irrespective of nature of heterogeneity in the system.

4. Routing State: The amount of routing state kept per
node should be constant and not depend on the number
of documents in the system.

While our model does not support complex SQL like
queries, we believe this model is flexible enough to sup-
port a wide range of useful queries and has been designed
keeping in mind facilities provided by traditional flooding
based systems like Gnutella. Moreover, this functionalityis
provided without much overhead in terms of per node state,
traffic generated or routing and lookup performance.

4 Modular Hashing

In this section, we describe modular hashing which is
an important component towards enabling keyword based
routing in DHT systems. Traditionally in a DHT-based sys-
tem the entire file descriptor like its title is mapped to a
uniquem bit key using popular hashing functions like MD5
or SHA1. This key is then use to store and subsequently
look up the document. Obviously, we cannot generate the

w1 w2 w3 wk……

h1() h2() h3() hk()

K1 K2 K3 Kk……

Shuffling phase

Modular Hashing

Kp
Combined Key

Figure 2. Modular Hashing is used to apply
individual hash functions to each keyword
which are then shuffled and then combined
to obtain the final documentID.

original m bit key for a document from any partial knowl-
edge of file attributes, hence the inherent problem with key-
word lookup in DHT systems.

Modular Hashing aims to alleviate this problem. We
originally discussed it in context of change detection for
high speed network traffic where hash based data structures
called sketches were used to store a highly summarized
view of very large traffic streams. It is used to hash the
document title to get its documentID which is used while
storing a document. It is illustrated in Figure??. Modular
Hashing usesn different hash functionsH1,H2,H3,Hk

each of which maps an arbitrary input to a differentm′ bit
key. Each of these hash functions is applied separately in or-
der on each of the keywordsw1 to wk to produce keysK1

to Kk , each of lengthm′ bits. Thesen m′ bit keys are then
shuffled to create a random ordering which are then com-
bined to form am bit keyKp called the Pointer Key. Shuf-
fling helps to get good load balancing properties for storing
a set of document title which have lot of common keywords.
This is analyzed in more detail in Section 6. The number of
keywords allowed per title would bem

m′
. Modular hashing

allows capturing of information about each keyword sep-
arately which is then later used in the routing and lookup
phase to allow keyword search. The routing and lookup ar-
chitecture is described in the next section (Section 5).

Anotherm bit key Ks is also generated independently
of modular hashing using the entire title as input. This key
is called the Storage Key. The nodeID corresponding to
Kp is used to store a pointer to the node corresponding to
Ks which actually stores the document. The reason for two
different keys is explained below.

Using Modular hashing, when we havem′ bits per key-
word, the collision rate per keyword can be high ifm′ is
small. There are two things to consider here: First, our fi-

4

nal key space is stillm bits. However, for each keyword,
if the keyword space isy bits i.e. there are2y possible val-
ues for each keyword and thesey bits map to am′ bit key ,
the collision rate perm′ bit key (number of keywords corre-
sponding to a uniquem′ bit key) is approximatelyy

m′
. For

example ifm′ = 12 and size of keyspace for a keyword is
220, approximately 256 keywords would map to a particular
m′ bit key. But these is not the collision rate for the entire
title, since each title is made up of several keywords, with
each keyword mapping to a separatem′ bit key. Alsom′ is
tunable and this collision rate can be decreased to arbitrary
levels.

Amount of query traffic is usually much less compared
to traffic generated from actual fetching of the entire file.
While looking up document titles for containing particu-
lar keywords,using Modular Hashing many nodes may be
visited which may be potential candidates for the keyword
searches. For a single keyword, the number of nodes vis-
ited depends onm′. For a n node network, number of
nodes having a common value of a particularm′ bit key (if
their nodeID is also seen as a combination ofk m′ bit keys)
would be approximatelyn

m′
. So even in the worst case if

more than one node correspond to a potential node contain-
ing a keyword search query, this increased query traffic has
no effect on the more intensive file fetch traffic since the file
is stored at the successor node ofKs. The file fetch traffic
is well balanced amongst all the nodes in the network. We
provide an upper bound for the routing traffic in Section 6.
Note that multiple searches for the same title will result in
multiple queries and fetches from the same node in tradi-
tional DHT systems also as the same title will be mapped
to the same key. Various passive and proactive replication
strategies have been proposed to provide load balancing for
this. However discussion of load balancing and replication
techniques for file storage and retrieval in DHT-based P2P
systems is orthogonal to our discussion and out of scope of
this paper.

5 Routing and Lookup

In this section we describe how a DHT-based routing
system which would work in conjunction with Modular
Hashing to obtain efficient and scalable keyword lookups.
As discussed before, Magnolia is not a search layer built
above a standard DHT-substrate like some other approaches
but is a modification of a DHT routing methods to allow
for keyword searches. This allows us to obtain tight con-
straints for performance and also makes search mechanism
very lightweight.

We describe the routing schemes in context of routing
in Chord, as it is easier to describe. However, other DHT
systems like Plaxton-mesh based systems like Tapestry can
also be modified to support keyword searches. As described

1+20�7

1 (3453)

7 (748)

18 (5646)

11 (5465)

27 (3446)

37 (3433)

42 (4345)

48 (1277)

67 (3437)
1+24�18

45 (8758)

1+25�37

1+26�67

….

n1

1+20�4

1+24�21

1+25�41

1+26�69

….

n2

1+20�3

1+24�19

1+25�44

1+26�74

….

nk

….

….

….

….

….

k finger tables for each keyword position

Shown here is routing for k1 = 33 at Node 1 for the 1st keyword finger table

Each node represents the set of siblings
corresponding to the id for n1

Figure 3. For searching a single keyword, its
m′ bit key is routed using k different m′ bit
finger tables in parallel. Only routing with the
first finger table is shown for clarity. Each
node is labeled with n1 as well as n in paren-
thesis. Here each node represents a set of
nodes which might have identical values for
the m′ bit key in the 1st position of their
nodeID (n1).

earlier in section 3.1.1, Chord routes a document key to
the nodeID which most immediately succeeds the document
ID. Chord achieves scalableO(log n) routing by maintain-
ing a finger list, containing addresses of nodes correspond-
ing to nodeIDsn + 2i where n is the current nodeID and
i is the key space. This produces an exponentially spaced
list of nodeIDs per node and allows locating the nodeID
corresponding to any documentID withinO(log n) steps.
It also maintains a immediate successor list for correctness
purposes.

For keyword-based routing, we want the routing sub-
strate to route to all potential nodes containing a document
which has a keyword in the query with a upper bound on
number of hops as well as number of nodes visited. First we
describe what is the relation between a documentID and the
nodeID in Magnolia’s model. Each nodeID n is also seen
as a combination ofk m′ bit hash keysn = n1.n2....nk.
For a documentID whose key isK = K1.K2...Kk the doc-
umentID K will be located at the closest successor node of
K. A particular keywordwi mapping to a keyKi can bepo-
tentially located in any node whosejth keynj is the closest
successor toKi for j = 1, 2, .., m

m′
. This is because we want

to return search results when the keyword is at any position
in the title. Also we saypotentially, because there might
be more than node who will be the immediate successor of

5

Ki in the jth key all with the same value ofnj . This will
be true if the keyspace fornj is smaller than total number
of nodes in the system. This number is however low and
tightly bounded (Section 6). Since more than one keyword
can map to the same value ofKi, it is possible that a node
who is the immediate successor ifKi in thejth key does not
actually contain the keywordwi but corresponds to some
other keyword. However, this can be determined as we also
have each node store the document title as well along with
its key. The key is used for location and efficient routing and
the title itself is used for verification to make sure the key-
word which is in the query is actually contained in the title.
We call the set of nodes who have the same value for am′

bit key K in thejth position of their nodeID ,siblingsK,j

i.e. siblings in thejth key for the valueK. To summarize,
a keywordwi mapping to the keyki could be potentially
contained in one or more nodes in the setsiblingski,j for
j = 1, 2, .., m

m′
. As we show later in analysis, this set can

be made arbitrarily small with the right choice ofm′ and
m. For example form′ = 12 andN = 106 nodes in the
system, this set can be of size 256 with high probability.

Now we describe the routing infrastructure in the context
of search for a single keywordwi. Figure 3 illustrates how
routing would proceed for searching for a single keyword.
Each node maintains k=m

m′
finger tables called the keyword

finger tables, corresponding to each of thekth keyword in
a title. If a particular keywordwi maps to them′ bit key
ki, all nodes who are the immediate successor ofki in any
of its keysnj , can potentially contain the keyword corre-
sponding toki in the positionj. We reach a node which is
the successor ofki in thejth key by performing repeated re-
cursive lookups in each of thejth finger tables starting with
a node n where the query is received initially. When routing
to a node, we also forward the keywordwi along with its
key ki. The lookups in different keyword finger tables are
performed in parallel. The algorithm is described in Figure
??. As described before, the approach here is that each node
find the closest predecessor corresponding to keyki in each
of its j finger tables and sends the query request to that node.
This repeats until we reach the immediate predecessorPi of
the successor node forki where the recursion loop ends and
the query is then just sent to immediate successor node of
Pi. This will take O(log(m′)) steps and the size of each
keyword finger table islog(m′) entries.

Each node N also maintains a separatesibling table
siblingTableK,j which stores the list of nodes belonging
to the setsiblingsK,j . We only require loose consistency
here , i.e. it need not maintain perfect information about all
the nodes. We later describe how this table is maintained
taking into account transiency in the P2P network. Now
when a immediate successor node in thejth field for the
keyword K with keyk receives the query (one of the mem-
bers ofsiblingsK,j) , it conveys this information to all its

3444

5847

4847

2589

….

8953

siblingTable1 for ki=37 (3433)

3433

3444 5847

4847

8953… Loose siblings

2589

Figure 4. The Initiator Sibling which corre-
sponds to key Ki informs all its siblings from
siblingTableKi,j via a multicast for the query
for keyword wi

siblings ∈ siblingTableK,j . We call this node the Initia-
tor Sibling. It constructs a binary multicast tree over thisset
and sends the query over this multicast tree.

Figure 4 shows the multicast phase of the keyword
search. For the multicast, the Initiator Sibling constructs
a sibling tree fromsiblingTableK,j . It creates an ordered
list multicast list = {siblingi ∈ siblingTableK,j}.
Here sibling1 is the Initiator Sibling itself. This or-
dered list represents the array form of a binary tree, where
siblingi routes the query tosibling2i andsibling2i+1. It
sends this array tosibling1 which then starts the mul-
ticast by sending the array to its children. Along with
this array it also sends the keywordwi along, the orig-
inal query q and j i.e the keyword position correspond-
ing to the finger list along which this query was for-
warded and the address of the originating client node to
which to send back replies. Amulticast message =
{multicast list, wi, q, j, client address}.

When a sibling in this multicast tree receives the query
request, it performs two tasks: 1) It received this query be-
cause its keynj is the closest successor to keyki corre-
sponding towi. Therefore many of its documents could
potentially contain this keyword in thejth position of its
title. It constructs a reply containing all document ti-
tles and their documentKey which have thejth keyword
equal towi and sends it tosibling1. 2) It checks it sib-
lingTablesiblingTableK,j and finds all siblings which are
not in the multicast list by performing the set opera-
tion {multicast list} − siblingTableK,j . It forwards the
multicast message to these siblings as well, as these sib-
lings may not be a part of the original multicast tree because

6

1+20�7

1+24�18

1+25�37

1+26�67

….

n1

1+20�4

1+24�21

1+25�41

1+26�69

….

n2

1+20�3

1+24�19

1+25�44

1+26�74

….

nk

….

….

….

….

….

k finger tables for each keyword position

Paralle l Routing amongst multiple finger
tables for k1 = 33 at Node 1

k1 = 33

Initiator siblings for different finger
tables 1…n
NodeID is shown as ni (n)(37) 3433 (42) 7526 (48) 2344

k Finger tables corresponding to
each keyword position

The sibling trees are shown
For each n i where the query for k1 is
received

Figure 5. The parallel lookup process for a
keyword for all the keyword positions in a ti-
tle.

of loose consistency. It also adds these siblings to another
list loose siblings and passes the list to its children along
with the multicast message, so that its children do not re-
transmit the multicast message to the same siblings again.

Whensibling1 receives the replies back from its child
siblings, it aggregates this information together and sends it
directly to the original client node from where the query was
initiated. Using the multicast approach allows us to conve-
niently disseminate the query information amongst the sib-
lings and aggregate the replies at the root to be sent back to
the originating client. For clarity, Figure 5 shows how a sin-
gle keyword query would proceed in parallel amongst dif-
ferentm′ bit finger tables and proceed to the sibling nodes
for their particularm′ bit key corresponding to the keyword.

As we shall show later in the performance analysis sec-
tion, the maximum number of hops in any of the parallel
paths taken including multicast isO(log(n)) with very high
probability. The amount of traffic and number of nodes vis-
ited is also low and bounded. Moreover, this bounds can be
adjusted by adjusting the values ofm′ andm.

5.1 Handling multiple keywords and boolean op-
erations

In the previous discussion, we described lookup and
routing in the context of searching for one keyword. Here
we discuss searching for multiple keywords as well as han-
dling boolean operations. For multiple keywords, each key-
word query will be routed independently using the mecha-
nism described previously. If the boolean operator is OR,
it is equivalent to independent queries which each keyword
searched separately. If there is a boolean AND operator

between the keywords e.g.̈Building AND Mysterÿ, each
of the nodes which receive a search query for one of these
keywords will not return any replies unless it also receives
query requests for other keywords which are joined by the
AND operator. Hence for AND queries , a node will wait
for all keyword searches to arrive at it independently before
searching its document titles for the AND query and return-
ing any replies tosibling1. This is because only a small
fraction of the sibling nodes corresponding to the one of the
keywords may actually also correspond to the keyword as
well. Only those siblings need to search their list and reply
which are routed requests for all the keywords connected
by the AND operator. The nodes can know this because
they also receive the complete query q as part of the multi-
castmessage.

An exact phrase search is very similar to AND opera-
tor search. For example a query Q=Ḧarder to breathëwould
be transformed intoQ′=”Harder AND to AND breathe” for
the purpose of searching. When a node receives search re-
quests corresponding to each of these keywords along with
the original exact phrase search query, it can check all its
matching entries forQ′ to see if they contain the exact
phrase specified in Q.

Note that there arek = m
m′

parallel route requests for
one keyword. For y keywords in a query there will be k*y
parallel route requests. This is necessary to allow keyword
searches in any position of the title.

5.2 Changes required for supporting multiple
search attributes

In this section we describe how multiple search attributes
can be supported using Magnolia. We described search
for more than keyword in a single attribute in the previ-
ous sections. However many documents like MP3 files
or research papers can contain multiple attributes like Ti-
tle, Album, Artist, Genre etc. When a document is ini-
tially stored in the DHT system, a separate document ID
is computed corresponding to each attribute using a differ-
ent set of hash functions for each attribute (remember that
for each attribute we usem

m′
different hash functions for

Modular Hashing to yield am bit key). For example an
MP3 file may havedocumentIDtitle , documentIDartist,
documentIDalbum, documentIDgenre corresponding to
each attribute. The document is stored in only one posi-
tion as defined by KeyKs, but pointers to it are stored at
successor nodes corresponding to each of its documentIDs
for different attributes. For supporting routing for each at-
tribute, each node would have to maintain a separate set of
k finger tables, enabling keyword search for each different
attribute. In this case search based on different attributes
essentially is independent of each other.

When a user searches for a document with keywords

7

in more than attribute, these amount to a AND operator
amongst different attributes. For example a user may search
for Q=älbum: horse AND title: headlight.̈ The mechanism
for achieving search for this is similar to supporting search
for AND amongst multiple keywords in one attribute. The
search query for each attribute is routed separately and in
parallel. When a sibling node receives a search query for
a particular attribute, it waits for other attribute queries to
arrive as well. Various queries for different attributes must
intersect at a node for that node to search its document list
and send a reply back. A node can decide to wait because
it is also sent the full query Q and it can know if it is re-
quired to wait for all search queries corresponding to each
query partition separated by AND to arrive before taking
any further decision.

6 Performance Analysis

In this section we analyze some important properties of
Magnolia which characterize its performance, routing state
and scalability.

Performance Results:
Theorem1 : For a query consisting of a single keyword,
results are returned inO(log(N)) hops from the originating
node, where N is the total number of nodes in the system.
Proof : For every keyword query received at an arbitrary
node n, keywordwi may be stored on any of the key-
wordGroups corresponding toh1(wi), h2(wi),hk(wi).
There the query for that keyword is routed for each of these
groups using the group finger table in parallel. For each
of the k independent parallel routes, each route ends up in
one of the random siblings belonging to that group. For
any of these routes, the number of hops taken in the group
finger table will bem′ since the number of entries in the
group finger table ism′. This particular result is proved in
Theorem 4 in [4].

After the keyword query reaches one of the sibling
nodes, it needs to be distributed to the rest of the siblings.
Using the multicast approach described in Section 5, the
height of the tree can belog(N

2m′) + 1. This is the expected

value because, number of nodes in a sibling group is2m′

.
The additional 1 factor is due to delivering queries to loose
siblings which can result in one extra hop from the total
depth of the tree. Each of these sibling nodes then searches
its hash table for presence of keywords in its document
pointers stored and returns the replies directly back to the
client.

The total number of hops is thereforem′ + log(N

2m′) + 1 =
log N + 1. Since the keyword queries are routes in parallel
to the differentk possible groups for a keyword, this is the

number of hops for each parallel route.
Scalability Results:
Theorem2 : For a single query , number of total nodes
visited isO(k(m′ + N

2m′))
Proof : The total number of nodes visited while reaching
each of the random siblings ism′ for each parallel query
route for a keyword. The expected number of siblings for
each of thek possible groups for a keyword isN

2m′ . Thus
the expected number of nodes visited for a single keyword
query isk(m′ + N

2m′).

To give a quantitative idea, for 1 million nodes, with
m′ = 16 andk = 10, the total number of nodes visited is
320.

Theorem3 : Amount of traffic generated for a single
keyword search isO(k(m′ + N

2m′) + r) units where r
is the number of document pointers matching the query
keywords.
Proof : The amount of traffic generated is proportional
to the number of nodes visited for each query (See
Theorem 2). In addition, a unit of traffic is generated
for each of the r replies. Note thatr depends on the
occurrence frequency distribution of the keywords in
the documents. This can be limited by specifying a
search bounded onr where a user also specifies the
number of results requested. Each traffic unit consists of
{Query, hi(keyword), client address} for the query and
replies consist of{document title, documentpointer}.

References

[1] BAUER, D., HURLEY, P., PLETKA , R., AND WALDVOGEL ,
M. Bringing efficient advanced queries to distributed hash
tables. InProceedings of IEEE LCN (Nov. 2004).

[2] GARCES-ERICE, L., FELBER, P., BIERSACK, E. W.,
URVOY-KELLER, G., AND ROSS, K. W. Data indexing in
peer-to-peer DHT networks. In24th International Confer-
ence on Distributed Computing Systems (24th ICDCS’2004)
(Tokyo, Japan, Mar. 2004), IEEE Computer Society, pp. 200–
208.

[3] M AYMOUNKOV, P., AND MAZI èRES, D. Kademlia:
A peer-to-peer information system based on the xor metric.
In IPTPS ’01: Revised Papers from the First International
Workshop on Peer-to-Peer Systems (2002), Springer-Verlag,
pp. 53–65.

[4] M ORRIS, R., KARGER, D., KAASHOEK, F., AND BALAKR -
ISHNAN, H. Chord: A Scalable Peer-to-Peer Lookup Ser-
vice for Internet Applications. InACM SIGCOMM 2001 (San
Diego, CA, September 2001).

[5] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-to-
peer systems. InProceedings of the 18th IFIP/ACM Inter-

8

national Conference on Distributed Systems Platforms (Mid-
dleware 2001) (Heidelberg, Germany, November 2001).

[6] TANG, C., MAHALINGAM , M., AND XU, Z. psearch: Infor-
mation retrieval in structured overlays, Oct. 20 2002.

[7] ZHAO, B. Y., HUANG, L., STRIBLING , J., RHEA, S. C.,
JOSEPH, A. D., AND KUBIATOWICZ , J. D. Tapestry: A
resilient global-scale overlay for service deployment.IEEE
Journal on Selected Areas in Communications 22, 1 (Jan.
2004), 41–53.

9

