
ShortCuts: Using Soft State

To Improve DHT Routing

Kiran Tati and Geoffrey M. Voelker

Department of Computer Science and Engineering
University of California, San Diego

La Jolla, CA 92093-0114
{ktati, voelker}@cs.ucsd.edu

Abstract. Distributed hash tables are increasingly being proposed as
the core substrate for content delivery applications in the Internet, such
as cooperative Web caches, Web index and search, and content delivery
systems. The performance of these applications built on DHTs funda-
mentally depends on the effectiveness of request routing within the DHT.
In this paper, we show how to use soft state to achieve routing perfor-
mance that approaches the aggressive performance of one-hop schemes,
but with an order of magnitude less overhead on average. We use three
kinds of hint caches to improve routing latency: local hint caches, path
hint caches, and global hint caches. Local hint caches use large successor
lists to short cut final hops. Path hint caches store a moderate number
of effective route entries gathered while performing lookups for other
nodes. And global hint caches store direct routes to peers distributed
across the ID space. Based upon our simulation results, we find that
the combination of the hint caches significantly improves Chord routing
performance: in a network of 4,096 peers, the hint caches enable Chord
to route requests with average latencies only 6% more than algorithms
that use complete routing tables with significantly less overhead.

1 Introduction

Peer-to-peer overlay networks provide a distributed, fault-tolerant, scalable ar-
chitecture on which wide-area distributed systems and applications can be built.
An increasing trend has been to propose content delivery services on peer-to-
peer networks, including cooperative Web caches [8], Web indexing and search-
ing [13,15], content delivery systems [2,11], and Usenet news [5]. Popular designs
of these overlay networks implement a distributed hash table (DHT) interface to
higher level software. DHTs map keys in a large, virtual ID space to associated
values stored and managed by individual nodes in the overlay network. DHTs
use a distributed routing protocol to implement this mapping. Each node in the
overlay network maintains a routing table. When a node receives a request for a
particular key, it forwards the request to another node in its routing table that
brings the request closer to its destination.

A natural trade off in the design of these routing protocols is the size of
the routing table and the latency of routing requests. Larger routing tables can

reduce routing latency in terms of the number of hops to reach a destination,
but at the cost of additional route maintenance overhead. Because the per-
formance and overhead of DHT overlay networks fundamentally depend upon
the distributed routing protocol, significant work has focused on the problem of
balancing the degree of routing state and maintenance with route performance.

Initial systems like Chord [25], Pastry [24], Tapestry [27], and CAN [22] use
routing tables of degree O(log n) to route requests in O(log n)) hops, where n
is the number of hosts in the network. Newer algorithms improve the theoreti-
cal bounds on routing state and hops. Randomized algorithms like Viceroy [16]
and Symphony [17] achieve small, constant-degree routing tables to route re-
quests on average in O(log n) and O(log log n) hops, respectively. Koorde [9] is
a tunable protocol that can route requests with a latency ranging from O(log n)
to O(log n/ log log n) hops for routing tables of constant size to O(log n)) size,
respectively. Other approaches, such as Kelips [7], Structured Superpeers [20],
Beehive [21], and CUP [23] focus on achieving constant-time O(1) hops to route
requests at the expense of high degree routing tables, hierarchical routing, tai-
loring to traffic distributions, or aggressive update protocols to maintain consis-
tency among the large routing tables in each peer.

In this paper, we argue that the appropriate use of cached routing state within
the routing protocol can provide competitive improvements in performance while
using a simple baseline routing algorithm. We describe and evaluate the use of
three kinds of hint caches containing route hints to improve the routing perfor-
mance of distributed hash tables (DHTs): local hint caches store direct routes
to successors in the ID space; path hint caches store direct routes to peers accu-
mulated during the natural processing of lookup requests; and global hint caches

store direct routes to a set of peers roughly uniformly distributed across the ID
space.

These hint caches require state similar to previous approaches that route
requests in constant-time hops, but they do not require the complexity and
communication overhead of a distributed update mechanism to maintain consis-
tency among cached routes. Instead, the hint caches do not explicitly maintain
consistency in response to peer arrivals and departures other than as straight-
forward extensions of the standard operations of the overlay network. We show
that hint cache inconsistency does not degrade their performance benefits.

We evaluate the use of these hint caches by simulating the latest version of
the Chord DHT [4] and extending it to use the three hint caches. We evaluate
the effectiveness of the hint caches under a variety of conditions, including highly
volatile peer turnover rates and relatively large network sizes. Based upon our
simulation results, we find that the combination of the hint caches significantly
improves Chord routing performance. In networks of 4,096 peers, the hint caches
enable Chord to route requests with average latencies only 6% more than algo-
rithms like “OneHop” that use complete routing tables, while requiring an order
of magnitude less bandwidth to maintain the caches and without the complexity
of a distributed update mechanism to maintain consistency.

The remainder of the paper is organized as follows. In Section 2, we discuss
related work on improving routing performance in peer-to-peer overlays. Sec-
tion 3 describes how we extend Chord to use the local, path, and global hint
caches. Section 4 describes our simulation methodology for evaluating the hint
caches, and presents the results of our evaluations. Finally, Section 5 summarizes
our results and concludes.

2 Related Work

Initial distributed routing protocols for DHT peer-to-peer overlay networks were
designed to balance routing state overhead and route maintenance overhead
while providing provably attractive routing performance. Chord [25], Pastry [24],
Tapestry [27], and Kademlia [18] use routing tables with degree O(log n) to route
requests in O(log n) hops through the networks.

Since the performance and overhead of these networks fundamentally de-
pend upon the distributed routing protocol, significant research has focused on
the problems of improving route maintenance and performance. As a result,
newer algorithms have improved the theoretical bounds on routing degree and
routing hops. The most efficient of these algorithms achieve either constant de-
gree routing state or constant hop routing latency, often, however, at the price
of additional system complexity.

A number of algorithms seek to minimize route maintenance overhead by
using only constant-size O(1) routing tables per node, such as Viceroy [16], Sym-
phony [17], and [9]. Several efforts have also been made to achieve constant-time
O(1) hops to route requests at the cost of high-degree routing tables. These ap-
proaches use gossip protocols to propagate route updates [7], hierarchical routing
through structured superpeers [20], complete routing tables consistently main-
tained using a hierarchical update protocol [6], and reliance on traffic distribu-
tions [21].

Chord/DHash++ [4] exploits the fact that lookups for replicated values only
need to reach a peer near the owner of the key associated with the value (since
the peer will have a replica). Although this is appropriate for locating any one
of a number of replicas, many applications require exact lookup. The “OneHop”
approach uses a very aggressive update mechanism to route requests in only a
single hop [6]. However, this approach requires a hierarchical update distribution
tree overlayed on the DHT, and requires significant communication overhead to
distribute updates to all nodes in the system. Beehive exploits the power-law
property of lookup traffic distributions [21] to achieve constant-time lookups.
However, a large class of applications induce different types of lookup traffic.

Perhaps the most closely related work is the Controlled Update Protocol
(CUP) for managing path caches on peers [23]. CUP uses a query and update
protocol to keep path caches consistent with peer arrivals and departures. CUP
was implemented in the context of the CAN overlay network, and evaluated rel-
ative to straightforward path caches with expiration. Although the CUP path
caches are analogous to the path hint caches in our work, our work differs in

a number of ways with the CUP approach. Rather than providing an update
mechanism to keep caches consistent, we instead combine the use of local hint
caches with path and global hint caches to improve performance and tolerate in-
consistency. We also evaluate hint caches with a baseline DHT routing algorithm
that routes in O(log n) hops (rather than a range of coordinate dimensions).

3 Design

Distributed hash tables (DHT) increasingly serve as the foundation for a wide
range of content delivery systems and applications. The DHT lookup operation
is the fundamental operation on which applications base their communication.
As a result, the performance of these applications directly depends on the per-
formance of the lookup operation, and improving lookup performance improves
performance for all applications layered on DHTs.

The primary goal of our work is to reduce lookup performance as close to
direct routing with much less overhead than previous approaches and without
relying upon specific traffic patterns. We also integrate the cache update mech-
anism to refresh cached route entries into the routing protocol to minimize the
update complexity as well as overhead. To achieve this goal, each peer employs
three hint caches. Local hint caches store direct routes to neighbors in the ID
space. Path hint caches store direct routes to peers accumulated during the nat-
ural processing of lookup requests. Finally, global hint caches store direct routes
to a set of peers roughly uniformly distributed across the ID space. We call them
hint caches since the cached routes are hints that may potentially be stale or
inconsistent. We also consider them soft-state hints since they can be recon-
structed quickly at any time and they are not necessary for the correctness of
the routing algorithm.

The following sections describe the behavior of each of the three hint caches.
Although these caches are applicable to DHTs in general, we describe them in
the context of integrating them into the Chord DHT as a concrete example.
So we start with a brief overview of the Chord lookup operation and routing
algorithm as background.

3.1 The Chord DHT

In Chord, all peers in the overlay form a circular linked list. Each peer has
one successor and one predecessor. Each peer also maintains O(log n) successors
and O(log n) additional peers called fingers. The owner of a key is defined as a
peer for which the key is in between the peer’s predecessor’s ID and its ID. The
lookup operation for a given key returns the owner peer by successively traversing
the overlay. Peers construct their finger tables such that the lookup operation
traverses progressively closer to the owner in each step. In recursive lookup, the
initiator peer uses its routing table to contact the closest peer to the key. This
closest peer then recursively forwards the lookup request using its routing table.
Included in the request is the IP address of the initiating peer. When the request

reaches the peer that owns the key, that peer responds directly to the initiator.
This lookup operation contacts O(log n) application level intermediate peers to
reach the owner for a given key.

We augment Chord with the three hint caches. Chord uses these hint caches
as simple extensions to its original routing table. When determining the next
best hop to forward a request, Chord considers the entries in its original finger
table as well as all entries in the hint caches.

3.2 Local Hint Caches

Local hints are direct routes to neighbors in the ID space. They are extensions
of successor lists in Chord and leaf nodes in Pastry, except that their purpose is
to improve routing performance. With a cache of local hints, a peer can directly
reach a small fraction of peers directly and peers can short cut the final hops of
request routing.

Local hints are straightforward to implement in a system like Chord using
its successor lists. Normally, each peer maintains a small list of its successors to
support fault-tolerance within Chord and upper layer applications. Peers request
successor lists when they join the network. As part of a process called stabiliza-

tion in Chord, each peer also periodically pings its successor to determine liveness
and to receive updates of new successors in its list. This stabilization process is
fundamental for maintaining lookup routing correctness, and most DHT designs
perform similar processes to maintain successor liveness.

We propose enlarging these lists significantly — on the order of a thousand
entries — to become local hint caches. Growing the successor lists does not in-
troduce any additional updates, but it does consume additional bandwidth. The
additional bandwidth required is S

H
entries per second where S is the number

of entries in local hint cache, and H is the half life time of peers in the system.
Each peer change, either joining or leaving, requires two entries to update. Sim-
ilar to [14], we define the half life as the time in seconds for half of the peers
in the system to either leave or join the DHT. For perspective, a study of the
Overnet peer-to-peer file sharing system measured a half life of four hours [1].

The overhead of maintaining the local hint cache is quite small. For example,
when S is 1000 entries and H is four hours, then each peer will receive 0.07 extra
entries per second during stabilization. Since entries are relatively small (e.g., 64
bytes), this corresponds to only a couple of bytes/sec of overhead.

Local hint caches can be inconsistent due to peer arrivals and departures.
When a peer fails or a new peer joins, for example, its immediate predecessor
will detect the failure or join event during stabilization. It will then update its
successor list, and start propagating this update backwards along the ring during
subsequent rounds of stabilization. Consequently, the further one peer is from
one its successors, the longer it takes that peer to learn that the successor has
failed or joined.

The average amount of stale data in the local hint cache is R∗S∗(S+1)
4∗H

, where
R is the stabilization period in seconds (typically one second). On average a
peer accumulates 1

2∗H
peers per second of stale data. Since a peer updates its

x’th successor every x∗R seconds, it accumulates x∗R
2∗H

stale entries from its x’th
successor. If a peer has S successors, then on average the total amount of stale
data is

∑S

i=1
i∗R
2∗H

. If the system half life time H is four hours and the local hint
cache size is 1000 peers, then each peer only has 1.7% stale entries. Of course, a
peer can further reduce the stale data by using additional update mechanisms,
introducing additional bandwidth and complexity. Given the small impact on
routing, we argue that such additions are unnecessary.

3.3 Path Hint Caches

The distributed nature of routing lookup requests requires each peer to process
the lookup requests of other peers. These lookup requests are generated both by
the application layered on top of the DHT as well as the DHT itself to maintain
the overlay structure. In the process of handling a lookup request, a given peer
can get information about other peers that contact it as well as the peer that
initiated the lookup.

With Path Caching with Expiration (PCX) [23], peers cache path entries
when handling lookup requests, expiring them after a time threshold. PCX
caches entries to the initiator of the request as well as the result of the lookup,
and the initiator caches the results of the lookup. In PCX, a peer stores routes to
other peers without considering the latency between itself and these new peers.
In many cases, these extra peers are far away in terms latency. Using these
cached routes to peers can significantly add to the overall latency of lookups
(Figure 4(a)). Hence PCX, although it reduces hops (Figure 4(b)), can also
counter-intuitively increase lookup latency.

Instead, peers should be selective in terms of caching information about
routes to other peers learned while handling lookups. We propose a selection
criteria based on the latency to select a peer to cache it. A peer x caches a peer
y if the latency to y from x is less than the latency from x to peer z, where (1)
z is in x’s finger table already and (2) its ID comes immediately before y’s ID
if x orders the IDs of its finger table peers. For example, assume y falls between
a and b in x’s finger table and then peer x contacts a to perform the lookup
request for an ID between (a, b]. If we insert y, then x would contact y for the
ID between (y, b]. Since the latency to y from x is less than the latency a from
x, the lookup latency may reduce for IDs between (y, b]. As a result, x will cache
the hop to y. We call the cache that collects such hints the path hint cache.

We would like to maintain the path hint cache without the cost of keeping
entries consistent. The following cache eviction mechanism tries to achieve this
goal. Since a small amount of stale data will not affect lookup performance
significantly (Figure 3), a peer tries to choose a time period to evict entries in
the path hint cache such that amount of stale data in its path cache is small,
around 1%. The average time to accumulate d percentage of stale data in the
path hint cache is 2 ∗ d ∗ h seconds, where h is the halving time [14]. Hence a
peer can use this time period as the eviction time period.

Although the improvement provided by path hint caches is somewhat marginal
(1–2%), we still use this information since it takes advantage of existing com-
munication and comes free of cost.

3.4 Global Hint Caches

The goal of the global hint cache is to approximate two-hop route coverage of
the entire overlay network using a set of direct routes to low-latency, or nearby,
peers. Ideally, entries in the global hint cache provide routes to roughly equally
distributed points in the ID space; for Chord, these nearby routes are to peers
roughly equally distributed around the ring.

These nearby peers work particularly well in combination with the local hint
caches at peers. When routing a request, a peer can forward a lookup to one of its
global cache entries whose local hint cache has a direct route to the destination.
With a local hint cache with 1000 entries, a global hint cache with a few thousand
nodes will approximately cover an entire system of few million peers in two hops.

A peer populates its global hint cache by collecting route entries to low-
latency nodes by walking the ID space. A peer x contacts a peer y from its
routing table to request a peer z from y’s local hint cache. The peer x can
repeat this process from z until it reaches one of its local hint cache peers. We
call this process space walking.

While choosing peer z, we have three requirements: minimizing the latency
from x, minimizing x’s global hint cache size, and preventing gaps in coverage
due to new peer arrivals. Hence, we would like to have a large set of peers to
choose from to find the closest peer, to choose the farthest peer in the y’s local
hint cache to minimize the global hint cache size, and to choose the closer peer in
y’s local hint cache to prevent gaps. To balance these three requirements, when
doing a space walk to fill the global hint cache we use the second half of the
successor peers in the local hint cache.

Each peer uses the following algorithm to maintain the global hint cache.
Each peer maintains an index pointer into the global hint cache called the refresh

pointer. Initially, the refresh pointer points to the first entry in the global hint
cache. The peer then periodically walks through the cache and examines cache
entries for staleness. The peer only refreshes a cache entry if the entry has not
been used in the previous half life time period. The rate at which the peer
examines entries in the global hint cache is g

2∗d∗h
, where d is targeted percentage

of stale data in the global hint cache, g is the global hint cache size, and h is
the halving time. This formula is based on the formula for stale data in the path
hint cache (Section 3.3).

d is a system configuration parameter, and peers can estimate h based upon
peer leave events in the local hint cache. For example, if the halving time h is
four hours, the global hint cache size g is 1000, and the maximum staleness d is
0.125%, then the refresh time period is 3.6 seconds. Note that if a peer uses an
entry in the global hint cache to perform a lookup, it implicitly refreshes it as
well and consequently reduces the overhead of maintaining the hint cache.

Scaling the system to a very large number of nodes, such as two million peers,
the global hint cache would have around 4000 entries and peers would require
one ping message per second to maintain 0.5% stale data in very high churn
situations like one-hour halving times. Such overheads are small, even in large
networks.

Peers continually maintain the local and path hint caches after they join the
DHT. In contrast, a peer will only start space walking to populate its global
hint cache if it receives a threshold explicit lookup requests directly from the
application layer (as opposed to routing requests from other peers). The global
hint cache is only useful for the lookups made by the peer itself. Hence, it is
unnecessary to maintain this cache for a peer that is not making any lookup
requests. Since a peer can build this cache very quickly (Figure 6), it benefits
from this cache soon after it starts making application level lookups. A peer
maintains the global hint cache using the above algorithm as long as it receives
lookups from applications on the peer.

3.5 Discussion

Our goal is to achieve near-minimal request routing performance with signif-
icantly less overhead than previous approaches. Local hint caches require S

H

entries/sec additional stabilization bandwidth, where S is the number of entries
in the local hint cache and H is the half life of the system. Path hint caches re-
quire no extra bandwidth since they incorporate information from requests sent
to the peer. And, in the worst case, global hint caches require one ping message
per 2∗d∗h

g
seconds to refresh stale entries.

For comparison, in the “OneHop” approach [6] each peer periodically com-
municates N

2∗H
entries to update its routing table, an order of magnitude more

overhead. With one million peers at four hour half life time, for example, peers
in “OneHop” would need to communicate at least 35 entries per second to main-
tain the state consistently, whereas the local hint cache requires 0.07 entries per
second and one ping per 28 seconds to maintain the global hint cache.

4 Methodology and Results

In this section we describe our DHT simulator and our simulation methodology.
We also define our performance metric, average space walk time, to evaluate the
benefits of our hint caches on DHT routing performance.

4.1 Chord Simulator

Although the caching techniques are applicable to DHTs in general, we chose
to implement and evaluate them in the context of Chord [25] due to its relative
simplicity. Although the Chord group at MIT makes its simulator available for
external use [10], we chose to implement our own Chord simulator together with
our hint caching extensions. We implemented a Chord simulator according to

the recent design in [4] that optimizes the lookup latency by choosing nearest
fingers. It is an event-driven simulator that models network latencies, but as-
sumes infinite bandwidth and no queuing in the network. Since our experiments
had small bandwidth requirements, these assumptions have a negligible effect
on the simulation results.

We separated the successor list and finger tables to simplify the implemen-
tation of the hint caches. During stabilization, each peer periodically pings its
successor and predecessor. If it does not receive an acknowledgment to its ping,
then it simply removes that peer from it tables. Each peer also periodically re-
quests a successor list update from its immediate successor, and issues lookup
requests to keep its finger table consistent. When the lookup reaches the key’s
owner, the initiating peer chooses as a finger the peer with the lowest latency
among the peers in the owner’s successor list.

For our experiments, we used a period of one second to ping the successor
and predecessor and a 15 minute time period to refresh the fingers. A finger is
refreshed immediately if a peer detects that the finger has left the DHT while
performing the lookup operation. These time periods are same as ones used in
the Chord implementation [10].

To compare different approaches, we want to evaluate the potential perfor-
mance of a peer’s routing table for a given approach. We do this by defining a
new metric called space walk latency. The space walk latency for a peer is the
average time it takes to perform a lookup to any other peer on the DHT at a
given point of time. We define a similar metric, space walk hops, in terms of hops
rather than latency. The space walk time is a more complete measurement than
a few thousands of random sample lookups because space walk time represent
lookup times to all peers in the network.

We simulate experiments in three phases: an initial phase, a stabilization
phase, and an experiment phase. The initial phase builds the Chord ring of a
specified number of nodes, where nodes join the ring at the rate of 50 nodes
per second. The stabilization phase settles the Chord ring over 15 minutes and
establishes a stable baseline for the Chord routing data structures. The experi-
mental phase simulates the peer request workload and peer arrival and departure
patterns for a specified duration. The simulator collects results to evaluate the
hint caching techniques only during the experimental phase.

Because membership churn is an important aspect of overlay networks, we
study the performance of the hint caches using three different churn scenarios:
twenty-four-hour, four-hour, and one-hour half life times. The twenty-four-hour
half life time represent the churn in a distributed file system with many stable
corporate/university peers [26]. The four-hour half life time represent the churn
in a file sharing peer-to-peer network with many home users [19]. And the one-
hour half life time represent extremely aggressive worst-case churn scenarios [6].

For the simulations in this paper, we use an overlay network of 8,192 peers
with latency characteristics derived from real measurements. We start with the
latencies measured as part of the Vivaldi [3] evaluation using the King [12]
measurement technique. This data set has approximately 1,700 DNS servers,

but only has complete all-pair latency information for 468 of the DNS servers.
To simulate a larger network, for each one of these 468 DNS servers we create
roughly 16 additional peers to represent peers in the same stub networks as the
DNS servers. We create these additional peers to form a network of 8,192 peers.
We model the latency among hosts within the group as zero to correspond to the
minimal latency among hosts in the same network. We model the latency among
hosts between groups according to the measured latencies from the Vivaldi data
set. The minimum, average, and maximum latencies among groups are 2, 165,
and 795 milliseconds, respectively. As a timeout value for detecting failed peers,
we use a single round trip time to that peer (according to the optimizations
in [4]).

Using measurements to create the network model adds realism to the evalu-
ation. At the same time, though, the evaluation only scales to the limits of the
measurements. To study the hint caches on systems of much larger scale, we also
performed experiments using another network model. First, we created a matrix
of network latency among 8,192 groups by randomly assigning a latency between
two groups from the range of 10 to 500 milliseconds. We then created an overlay
network of 65,536 peers by randomly assigning each peer to one group, keeping
the groups balanced. We do not present the results here due to space limitations.
But the results using the randomly assigned latencies are qualitatively similar to
the results using the Vivaldi data set, and we prefer instead to report in detail
the results using the network model derived from the Vivaldi data set.

4.2 Local Hint Caches

In this experiment we evaluate the performance of the local hint cache compared
with two baseline routing algorithms, “Standard” and “OneHop.” “Standard” is
the default routing algorithm in Chord++ [4] that optimized for lookup latency
by choosing nearest fingers. “OneHop” maintains complete routing tables on all
peers [6].

Figures 1(a) and 1(b) show the cumulative distributions for the space walk
latencies and hops, respectively, across all peers in the system. Since there is no
churn in this experiment, we calculate the latencies and hops after the network
stabilizes when reaching the experimental phase; we address churn in the next
experiment. Figure 1(a) shows results for “Standard” and “OneHop” and local
hint cache sizes ranging from 64–1024 successors; Figure 1(b) omits “OneHop”
since it only requires one hop for all lookups with stable routing tables.

Figure 1(a) shows that the local hint caches improve routing performance
over the Chord baseline, and that doubling the cache size roughly improves
space walk latency by a linear amount. The median space walk latency drops
from 432 ms in Chord to 355 ms with 1024 successors in the local hint cache (a
decrease of 18%). Although an improvement, the local hint cache alone is still
substantially slower than “OneHop”, which has a median space walk latency of
273 ms (a decrease of 37% is needed).

0

10

20

30

40

50

60

70

80

90

100

200 250 300 350 400 450 500 550 600 650 700 750 800 850

Space Walk Latency (in M illiseconds)

Pe
rc

en
ta

ge
 o

f P
ee

rs

OneHop

Standard

64-Successors

256-Successors

1024-Successors

(a) Latency distributions

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Spacw Walk Hops

P
er

ce
nt

ag
e

of
 P

ee
rs

Standard

64-Successors

256-Successors

1024-Successors

(b) Hop count distributions

Fig. 1. Sensitivity of local hint cache size on lookup performance.

Figure 1(b) shows similar behavior for local hint caches in terms of hops. A
local hint cache with 1024 successors decreases median space walk latency by 2.5
hops, although using such a cache still requires one more hop than “OneHop”.

From the graph, we see that doubling the local hint cache size improves
the number of hops by at most 0.5. Doubling the local hint cache size reduces
hop count by one for half of the peers, and the remaining half does not benefit
from the increase. For example, consider a network of 100 peers where each peer
maintains 50 other peers in its local hint cache. For each peer, 50 peers are one
hop away and the other 50 peers are two hops away. As a result, the space walk
hop distance is 1.5 hops. If we increase the local hint cache to 100 peers, then
each peer reduces the hop distance for only the 50 peers that were two hops
away in the original scenario. In this case, the space walk hop distance is 1.

When there is no churn in the system, the lookup performance when mea-
sured in terms of hops either remains the same or improves when we double the
local hint cache size. The results are more complicated when we measure lookup
performance in terms of latency. Most peers improves their lookup latencies to
other peers and, on average, increasing local hint cache improves the space walk
latency. However, lookup latency to individual peers can increase when we dou-
ble the local hint cache size in some cases. This is because Internet routing does
not necessarily follow the triangular inequality: routing through multiple hops
may have lower latency than a direct route between two peers. Since we de-
rive our network latency model from Internet measurements, our latency results
reflect this characteristic of Internet routing.

4.3 Staleness in Local Hint Caches

The previous experiment measured the benefit of using the local hint cache in
a stable network, and we now measure the cost in terms of stale entries in the
local hint cache and the effect of staleness on lookup performance.

In this experiment, we use a local hint cache size of 1024 successors. To
calculate stale data in local hint caches, we simulated a network of 4096 peers
for an experimental phase of 30 minutes. During the experimental phase, the

0

10

20

30

40

50

60

70

80

90

100

0 6 12 18 24 30 36 42 48 54

Stale Data (Number of Stale Entries)

P
er

ce
nt

ag
e

of
 P

ee
rs

OneHour

FourHours

OneDay

(a) Stale data distribution

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5

Update Size (Num ber of Peers per Second)

Pe
rc

en
ta

ge
 o

f P
ee

rs

OneHour

FourHours

OneDay

(b) Update traffic distribution

Fig. 2. Stale data and update traffic under various churn situations.

network experiences churn in terms of peer joins and leaves. We vary peer churn
in the network by varying the half life of peers in the system from one hour to
one day; we select nodes to join or leave from a uniform distribution.

Figure 2(a) shows the fraction of stale entries in local hint caches for various
system half life times as a cumulative distribution across all peers. We calculated
the fraction of stale entries by sampling each peer’s local hint cache every second
and determining the number of stale entries. We then averaged the samples
across the entire simulation run. Each point (x, y) on a curve indicates that
y percentage of peers have at most x% stale data in their local hint caches.
As expected, the amount of stale data increases as the churn increases. Note
that the amount of stale data is always less than the amount calculated from
our analysis in Section 3.2 since the analysis conservatively assumes worst case
update synchronization.

0

10

20

30

40

50

60

70

80

200 250 300 350 400

Space Walk Latency (in Milliseconds)

P
er

ce
nt

ag
e

of
 P

ee
rs

Infinite

OneHour

FourHours

OneDay

Fig. 3. Space walk latency distributions under various churn situations.

Figure 3 shows the effect of stale local hint cache entries on lookup perfor-
mance across all peers. It shows results for the same system half life times as
Figure 2(a) and adds results for an “Infinite” half life time. An “Infinite” half
life means that there is no churn, no stale entries in the hint cache, and therefore
represents the best-case latency. At the end of the experiment phase in the simu-
lation, we used the state of each peer’s routing table to calculate the distribution
of space walk latencies across all peers. Each point (x, y) in the figure indicates

that y percentage of peers have at most x space walk latency. We cut off the
y-axis at 75% of peers to highlight the difference between the various curves.

The space walk latencies for a four hour half life time are similar to the
latencies from the ideal case with no churn (medians differ by only 1.35%). From
these results we conclude that the small amount of stale data (1–2%) does not
significantly degrade lookup performance, and that the local hint cache update
mechanism maintains fresh entries well. As the churn rate increases, stale data
increases and lookup performance also suffers. At an one hour half life, lookup
performance increases moderately.

Note that the “Infinite” half life time curve in Figure 3 performs better than
the 1024 successors curve in Figure 1(a) even though one would expect them to
be the same. The reason they differ is that the finger table entries in these two
cases are different. When we evaluated the local hint cache, we used a routing
table with 13 successors and added the remaining successors to create the local
hint cache without changing the finger table. When we evaluated the stale data
effects in the local hint cache we have 1024 successors from which to choose
“nearest” fingers. As a result, the performance is better.

4.4 Update Traffic

In the previous section we evaluated the effect of stale data on lookup perfor-
mance under various churn scenarios. In this section we evaluate the update
traffic load under various churn scenarios to evaluate the update traffic band-
width required by large local hint caches.

We performed a similar experiment as in Section 4.3. However, instead of
measuring stale data entries we measured the update traffic size. We calculated
the average of all update samples per second for each peer over its lifetime in
terms of the number of entries communicated. Figure 2(b) presents this average
for all peers as cumulative distributions. Each curve in Figure 2(b) corresponds to
a different churn scenario. A point (x, y) on each curve represent the y percentage
of peers that have at most x entries of average update traffic. The average
update traffic closely matches the estimate from our analysis in Section3.2. The
average update traffic (0.4 entries/second) is extremely low even under worst
case conditions. Hence, this traffic does not impose a burden on the system.

4.5 Path Hint Caches

Next we evaluate the performance of the path hint cache (PHC) described in Sec-
tion 3.3 compared to path caching with expiration (PCX) as well as Chord. PCX
is the technique of caching path entries described in [23]. When handling lookup
requests on behalf of other nodes, PCX caches route entries to the initiator of
the request as well as the result of the lookup.

In this experiment, we simulate a network of 4096 peers with a 30-minute
experimental phase. We study the lower-bound effect of the path hint caches
in that we do not perform any application level lookups. Instead, the path hint
caches are only populated by traffic resulting from network stabilization. We

0

10

20

30

40

50

60

300 350 400 450 500

Space Walk Latency (in M illiseconds)

Pe
rc

en
ta

ge
 o

f P
ee

rs

Standard

PCX

PHC

(a) Latency Distribution

0

10

20

30

40

50

60

70

80

90

100

3 3.5 4 4.5

Space Walk Hops

P
er

ce
nt

ag
e

of
 P

ee
rs

Standard

PCX

PHC

(b) Hop count distributions

Fig. 4. Lookup performance of path caching with expiration (PCX), path hint cache
(PHC), and standard Chord.

did not simulate application level lookup traffic to separate its effects on cache
performance; with applications performing lookups, the path hint caches may
provide more benefit, although it will likely be application-dependent. Since there
is no churn, cache entries never expire. To focus on the effect of path caches only,
we used a local hint cache size of 13, the size of the standard Chord successor
list, and no global hint cache. We collected the routing tables for all peers at the
end of the simulations and calculated the space walk latencies and hops.

Figure 4(a) shows the cumulative distribution of space walk latencies across
all peers at the end of the simulation for the various path caches and standard
Chord. Each point (x, y) in this figure indicates that y percent peers have at
most x space walk latency. From these results we see that, as expected, the path
hint cache improves latency only marginally. However, the path hint cache is
essentially free, requiring no communication overhead and a small amount of
memory to maintain.

We also see that PCX performs worse even than Chord. The reason for this is
that PCX optimizes for hops and caches routing information independent of the
latency between the caching peer and the peer being cached. The latest version
of Chord and our path hint caches use latency to determine what entries to place
and use in the caches and in the routing tables. For peers with high latency, it
is often better to use additional hops through low-latency peers than fewer hops
through high-latency peers.

Figure 4(b) shows this effect as well by presenting the cumulative distribution
of space walk hops across all peers for the various algorithms. Each point (x,
y) in this figure indicates that y percent peers have at most x space walk hops.
Using the metric of hops, PCX performs better than both Chord and PHC.
Similar to results in previous work incorporating latency into the analysis, these
results again demonstrate that improving hop count does not necessarily improve
latency. Choosing routing table and cache entries in terms of latency is important
for improving performance.

The path hint cache are small and each peer aggressively evicts the cache
entries to minimize the stale data. Hence the effects of stale data on lookup
request performance is marginal.

0

10

20

30

40

50

60

70

80

90

100

200 250 300 350 400 450 500 550 600 650 700 750 800 850

Space Walk Latency (in Milliseconds)

P
er

ce
nt

ag
e

of
 P

ee
rs

Standard

LocalCache

GlobalCache-32

OneHop

GlobalCache-256

(a) Global Hint Cache performance

0

10

20

30

40

50

60

70

80

90

100

200 250 300 350 400 450 500 550 600 650 700

Space Walk Latency (in Milliseconds)

P
er

ce
nt

ag
e

of
 P

ee
rs

GlobalCache-32

Vivaldy-32

GlobalCache-256

Vivaldy-256

(b) Effects of Network Coordinates

Fig. 5. Global hint cache performance in ideal and practical situations.

4.6 Global Hint Caches

Finally, we evaluate the performance of using the global hint cache together with
the local and path hint caches. We compare its performance with “Standard”
Chord and “OneHop”. In this experiment, we simulated 4092 peers with both 32
and 256 entries in their local hint caches. We have two different configurations of
local hint caches to compare the extent to which the global hint cache benefits
from having more candidate peers from which to select nearby peers to place in
the global hint cache. (Note that the global hint cache uses only the second half
of the nodes in the local hint cache to select nearest nodes; hence, the global hint
cache uses only 16 and 128 entries to choose nearest peers in the above two cases.)
Each peer constructs its global cache when it joined the network as described
in Section 3.4. We collected the peer’s routing tables once the network reached
a stable state during the experimentation phase, and calculated the space walk
latencies for each peer from the tables.

Figure 5(a) shows the cumulative distributions of space walk latencies across
all peers for the various algorithms. The “Standard”, “OneHop”, “LocalCache”,
“GlobalCache-32”, and “GlobalCache-256” curves represent Chord, the “One-
Hop” approach, a 1024-entry local hint cache, a 32-entry global hint cache with
a 256-entry local hint cache, and a 256-entry global hint cache with a 32-entry
local hint cache. Comparing the size of local hint caches used to populate the
global hint cache, we find that the median space walk latency of “GlobalCache-
256”is 287 ms and “GlobalCache-32” is 305 ms; the performance of the global
hint cache improved only 6% when it has more peers in the local hint cache to
choose the nearest peer.

Comparing algorithms, we find that the median latency of the global hint
cache comes within 6% of the “OneHop” approach when the global hint cache
uses 128 of 256 entries in the local hint cache to choose nearby peers. Although
these results are from a stable system without churn, the global hint cache
performance under churn is similar to the local hint cache performance under
churn because both of them use a similar update mechanism. As a result, the
effect of stale data in the global hint cache is negligible for a one-day system half
life time and four-hour system half life time. Overall, our soft-state approach

approaches the lookup latency of algorithms like “OneHop” that use significantly
more communication overhead to maintain complete routing tables.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Time to Build Global Hint Cache (in seconds)

P
er

ce
nt

ag
e

of
 N

od
es

One

Two

Four
Eight

Fig. 6. Global hint cache build time

Since we contact closer peers while constructing the global hint cache, one
can build this cache within a few minutes. To demonstrate this, we calculated
the time to build the global hint cache for 4096 peers. Figure 6 presents the
results of this experiment as a distribution of cache build times. Each point (x,
y) on a curve indicates that y percentage of peers needs at most x seconds to
build the cache. Each peer has around 500 peers in its the global hint caches. On
the average it took 45 seconds to build the global hint cache. A peer can speed
up this process by initiating walks from multiple peers from its routing table
in parallel. The curves labeled “Two”, “Four”, and “Eight” represent the cache
build times with two, four, and eight parallel walks, respectively. As expected,
cache build time reduces as we increase the number of parallel walks. The median
reduces from 32 seconds for single walk to 12 seconds for four parallel walks. We
see only a small benefit of increasing the parallel walks after four parallel walks.

So far we have assumed that, when populating the global hint caches, peers
are aware of the latencies among all other peers in the system. As a result,
the results represent upper bounds. In practice, peers will likely only track the
latencies of other peers they communicate with, and not have detailed knowledge
of latencies among arbitrary peers. One way to solve this problem is to use a
distributed network coordinate system such as Vivaldi [3]. Of course, network
coordinate systems introduce some error in the latency prediction. To study
the effect of coordinate systems for populating global hint caches, we next use
Vivaldi to estimate peer latencies.

In our simulation we selected the nearest node according to network latency
estimated according to the Vivaldi network coordinate system, but calculated the
space walk time using actual network latency. We did this for the “GlobalCache-
32” and “GlobalCache-256” curves in Figure 5(a). Figure 5(b) shows these curves
and the results using Vivaldi coordinates as “Vivaldi-32” and “Vivaldi-256”. The
performance using the coordinate system decreases 6% on average in both cases,
showing that the coordinate system performs well in practice.

5 Conclusions

In this paper, we describe and evaluate the use of three kinds of hint caches

containing route hints to improve the routing performance of distributed hash
tables (DHTs): local hint caches store direct routes to neighbors in the ID space;
path hint caches store direct routes to peers accumulated during the natural
processing of lookup requests; and global hint caches store direct routes to a set
of peers roughly uniformly distributed across the ID space.

We simulate the effectiveness of these hint caches as extensions to the Chord
DHT. Based upon our simulation results, we find that the combination of hint
caches significantly improves Chord routing performance with little overhead.
For example, in networks of 4,096 peers, the hint caches enable Chord to route
requests with average latencies only 6% more than algorithms like “OneHop”
that use complete routing tables, while requiring an order of magnitude less
bandwidth to maintain the caches and without the complexity of a distributed
update mechanism to maintain consistency.

6 Acknowledgments

We would like thank the anonymous reviewers for their valuable feedback for
improving this paper. We would also like to express our gratitude to Marvin
McNett for system support for performing our simulation experiments, and to
Frank Dabek for providing us with the network latency information used in
all simulations. Support for this work was provided in part by AFOSR MURI
Contract F49620-02-1-0233 and DARPA FTN Contract N66001-01-1-8933.

References

1. R. Bhagwan, S. Savage, and G. M. Voelker. Understanding availability. In 2nd
International Workshop on Peer-to-Peer Systems, Feb. 2003.

2. M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh.
Splitstream: High-bandwidth multicast in cooperative environments. In 19th ACM
Symposium on Operating Systems Principles, Oct. 2003.

3. R. Cox, F. Dabek, F. Kaashoek, J. Li, and R. Morris. Practical, distributed network
coordinates. In proceedings of Second Workshop on Hot Topics in Networks, Nov.
2003.

4. F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris. Designing
a dht for low latency and high throughput. In ACM/USENIX Symposium on
Networked Systems Design and Implementation, Mar. 2004.

5. F. D. Emil Sit and J. Robertson. Usenetdht: A low overhead usenet server. In 3rd
International Workshop on Peer-to-Peer Systems, Feb. 2004.

6. A. Gupta, B. Liskov, and R. Rodrigues. Efficient routing for peer-to-peer overlays.
In ACM/USENIX Symposium on Networked Systems Design and Implementation,
Mar. 2004.

7. I. Gupta, K. Birman, P. Linga, A. Demers, and R. van Renesse. Kelips: Building an
efficient and stable p2p dht through increased memory and background overhead.
In 2nd International Workshop on Peer-to-Peer Systems, Feb. 2003.

8. S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A decentralized and peer-to-peer
web cache. In 21st ACM Symposium on Principles of Distributed Computing, July
2002.

9. F. Kaashoek and D. R. Karger. Koorde: A simple degree-optimal hash table. In
2nd International Workshop on Peer-to-Peer Systems, Feb. 2003.

10. M. F. Kaashoek and R. Morris. http://www.pdos.lcs.mit.edu/chord/.
11. D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High bandwidth

data dissemination using an overlay mesh. In 19th ACM Symposium on Operating
Systems Principles, Oct. 2003.

12. S. S. Krishna P. Gummadi and S. D. Gribble. King: Estimating latency between
arbitrary internet end hosts. In 2nd Internet Measurement Workshop, Nov. 2002.

13. J. Li, B. T. Loo, J. M. Hellerstein, M. F. Kaashoek, D. R. Karger, and R. Morris.
On the feasibility of peer-to-peer web indexing and search. In 2nd International
Workshop on Peer-to-Peer Systems, Feb. 2003.

14. D. Liben-Nowell, H. Balakrishnan, and D. Karger. Observations on the dynamic
evolution of peer-to-peer networks. In First International Workshop on Peer-to-
Peer Systems, Mar. 2002.

15. B. T. Loo, S. Krishnamurthy, and O. Cooper. Distributed web crawling over dhts.
Technical Report UCB/CSD-4-1305, UC Berkeley, 2004.

16. D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable and dynamic emulation
of the butterfly. In 21st ACM Symposium on Principles of Distributed Computing,
July 2002.

17. G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed hashing in a
small world. In 4th USENIX Symposium on Internet Technologies and Systems,
Mar. 2003.

18. P. Maymounkov and D. Mazires. Kademlia: A peer-to-peer information system
based on the xor metric. In 1st International Workshop on Peer-to-Peer Systems,
Mar. 2002.

19. J. McCaleb. http://www.overnet.com/.
20. A. Mizrak, Y. Cheng, V. Kumar, and S. Savage. Structured superpeers: Leveraging

heterogeneity to provide constant-time lookup. In IEEE Workshop on Internet
Applications, June 2003.

21. V. Ramasubramanian and E. G. Sirer. Beehive: O(1) lookup performance for
power-law query distributions in peer-to-peer overlays. In ACM/USENIX Sympo-
sium on Networked Systems Design and Implementation, Mar. 2004.

22. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network. In proceedings of ACM SIGCOMM, Aug. 2001.

23. M. Roussopoulos and M. Baker. Cup: Controlled update propagation in peer-to-
peer networks. In USENIX Annual Technical Conference, June 2003.

24. A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware), Nov. 2001.

25. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. In proceedings of
ACM SIGCOMM, Aug. 2001.

26. D. E. William J. Bolosky, John R. Douceur and M. Theimer. Feasibility of a
serverless distributed file system deployed on an existing set of desktop pcs. In
Proceedings of SIGMETRICS, June 2000.

27. B. Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141, UC
Berkeley, Apr. 2001.

