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Locating the node that stores a particular data item is a fundamental problem in peer-to-
peer systems and is traditionally formulated as the construction of a distributed hash table
(DHT). Typical DHTs support only a simple map from keys to values, but not keyword
search. To support keyword search on a DHT, some distributed inverted index is needed.
The challenge is how to evenly distribute the inverted index entries over the peers of the net-
work. Because the keywords frequency in data items is usually of a zipf-distribution, simply
partitioning inverted index entries by keywords would cause unbalanced loads. Furthermore,
when there are more than one keywords in a query, some intermediate data have to be trans-
mitted across the network and joined with each other to get the final result, incuring much
network traffic overhead.

We propose a distributed indexing scheme, called Adaptive Space Partition (ASP), that
has a good load balancing and incurs little network traffic overhead. The ASP scheme is
designed to work on top of the CAN DHT. A CAN network is structured as a d-dimension
virtual coordinate space, where each peer node is assigned to a zone in the space. The ASP
scheme maps a keyword to a region, consisting of one or more zones. Each object related
to a given keyword is inserted into a peer randomly selected from the keyword’s region. To
lookup objects related to the same keyword, a peer is randomly selected from the same region
as a starting point, which then searches its neighborhood by flooding. Because objects with
the same keyword are inserted into the same region, objects have good keyword locality and
can be found easily. Furthermore, our scheme partitions inverted index entries according to
the number of peers in a region to achieve better scalability. The ASP scheme also optimizes
the query operation to have the same complexity as a CAN routing procedure.
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Chapter 1

Introduction

1.1 Motivation

File sharing has long been the most popular peer-to-peer application. Popular peer-to-peer

systems such as Freenet [1], eMule[2], eDonkey[3] usually has hundreds of thousands of users

online at least. Suppose each user contributes a few files, then there will be millions of files

available in the network. This is why peer-to-peer applications are so popular. It also means

peer-to-peer applicatoins have to face a problem: how to find relevant objects from millions

of files distributed on the peer-to-peer network?

There are three classes of peer-to-peer networks currently in use:

• Centralized Architecture: In this approach; some centralized servers are responsible for

maintaining the index of all objects in the network. Every time when a peer wants to

share an object, one or more entries are inserted to the central index server. The central

server maintains a list of all the shared files in network. The query operation process as

fellows: peer sends some search criterion to the central server, then the server scans the

list and return matching objects. Napster is one example of centralized system. This

kind of system is efficient when the network size is small, however the centralized server

is a single failure point, which may suffer from the denial of service (DOS) attacks. For

more, as the online peers become more and more, centralized approach does not scale

well.

• Distributed Unstructured Architecture: This approach is on the extremely opposite

of the first one. For example, Gnutella organizes peers into an unstructured overlay
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network. There is no central index server exists. Peers use mass of unstructured links

to communicate with each other. To search objects in Gnutella, a peer first sends a

broadcast query message with a non-zero TTL to all its known peers. Since Gnutella

use no central mechanism, no single failure point exists. It works very efficiently when

the number of peers is few. However this flooding-style BFS mechanism doesnot scale

well either. When the network grows, higher TTL is needed for the search operation

to search the network, which creates large transmission overhead.

• Distributed Structured Architecture: This kind of architectures is also called as Dis-

tributed Hash Tables(DHTs). The DHTs such as PRR [4], Tapstry [5] , CAN [6], and

Chord [7] emphasize on the scalability and reliability of the overlay network. In the

DHT schemes, each object has a unique key (object ID). Given an object ID, the DHT

algorithm routes the request to the peer, which is responsible for maintaining the ref-

erence of the desired object. The DHTs successfully overcome the scalibility problem.

Unfortunately, DHTs dont support keyword search. It is a inherence of hash function

that even a single different bit leads to a totally different object ID. As a result, no

fuzzy search is allowed in a DHT,

To implement keyword search on a DHT, some inverted index is required. An inverted

index is a data structure that maps keywords to object references.

For example:

keyword object description object reference
Music Madana 2002 Music p2p://www.xx.org/xx.mp3

Music-Autumn leaf p2p://www.xx.org/oo.wav
Guitar Heavy metal guitar MTV p2p://www.oo.org/xxx.mpg

... ...

The challenge is how to design the right algorithm to evenly distribute the inverted

index. One naive approach is to equally partition the DHT name space for each keyword.

This approach is impractical because the keywords frequency in queries is a zipf-distribution

[8]. Simply partitioning inverted index entries by keyword make some unfortunate peers

responsible for much higher load, and thus make the system load unbalanced. A simple
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Figure 1.1: zipf-distribution

description of data that follow a zipf-distribution is that they have

• A few elements that score very high (the left tail in the diagrams)

• A medium number of elements with middle-of-the-road scores (the middle part of the

diagram)

• Huge number of elements that score very low (the right tail in the diagram)

If the inverted index entries are partitioned by keyword, when the query uses more

than one keywords, some intermediate data have to be transferred across the network and

joined each other to get the final result. This join operation induces very large transmission

overhead, which we do not want. To overcome this problem, Patrick Reynolds and Amin

Vahdat have proposed a scheme using bloom filters. Bloom filters do greatly reduce the

transmission overhead, however this approach still suffers from the unbalanced loads.

The DHTs are designed for large-scale peer-to-peer overlay networks, but when the num-

ber of peers is small, most DHTs cannot work very well. Some experimental results show

that when the number of peers is small, simple approaches such as centralize servers or

message flooding work much better.

Keyword search is the most natural approach for people to find desired information, but

current peer-to-peer keyword search schemes do not do it very well. We are motivated to
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develop a new scheme. We expect this scheme to be adaptive, efficient, and avoid undesired

characteristics mentioned above, which exists in current peer-to-peer keyword search systems.

1.2 Objectives

We believe that the query operation is the most critical of a peer-to-peer resource sharing

system, and the end-user latency is the most import performance measure. Because users

search resource much often than sharing. We want to optimize our algorithm for the query

operation.

Current DHT designs offer many good properties such as efficiency, fault tolerance, and

the most important of all: scalibility. However, as mentioned above, the DHT is designed for

large-scale networks and is not as efficient as the flooding-style or centralized system when

the number of peers is small. To overcome this problem, we design the ASP to be a hybrid

system, such that when peers are few, it tends to become like a flooding-style system; and

when the number of peers increases, it become much like a DHT.

Since inverted index entries are partitioned by keyword, when there are more than one

keywords, some join operations have to be performed. We want to minimize this kind of

overhead. If much of the work is done locally, no join cost is required. Our approach is a

trade-off between transmission cost and storage. In current networks, bandwidth is shared

by everyone and still one of the most limited resource. On the other hand, a current desktop

always has very big storage whose utilization is often low. So we think it is reasonable to

trade storage with bandwidth, and this approach would achieve better system performance.

The ASP scheme uses a regular expression filter and dynamic space partition; thus for

each query, whether it uses one keyword or more, only a constant number of messages are

require.

1.3 Thesis Outline

In Chapter 2, we survey related works. These related works includes structured overlay

network like CAN, unstructured overlay networks such as Gnutella and Napster, and other

schemes, which are built on top of them to support more complex functionality.
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In Chapter 3, we presents our ASP secheme, including the main idea of ASP, basic

algorithm about object insertion and query; and the most important of all: how the adptive

space partition works.

In Chapter 4, we describe our experimental model and performance evaluations such as

object insertion overhead, query overhead and the peer load distribution.

Finally, we present conclusions and future work in chapter 5.
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Chapter 2

Related Work

Recently a number of systems have been developed to support keyword search on peer-to-

peer systems. In this chapter, we first introduce the Content Addressable Network. CAN

is a DHT algorithm, which scales well but does not support keyword search. We then

introduce Gnutella nad Napster. Gnutella is a fully distributed, flooding-based system, and

Napster is a centralized system. Their designs are totally different but both suffer from the

scalibility problem. Finally we introduce several systems, who tries to build the keyword

search functionality on top of overlay networks.

2.1 Content Addressable Network (CAN)

CAN [6] is a distributed hash table, the basic operations of CAN include insertion, lookup

and deletion of (key, value) pairs. The CAN network is formed by many individual peers.

Each peer occupies a zone in the CAN virtual space. Each shared object is inserted to one

coordinate in the virtual space. The peer whose zone covers this coordinate is responsible

for maintaining the reference of that object. Object lookup is done by invoking a CAN

message routing procedure, this procedure routes the lookup request to the peer who has

the reference of the desired object.

2.1.1 Routing in CAN

Routing in CAN works by sending the message directly from the source peer to the destina-

tion peer along strait lines in each Cartesian space dimension.
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Figure 2.1: CAN virtual space

Each peer maintains its own routing table, which contains the network address and the

virtual space of its immediate neighbors. In a d-dimension Cartesian space, two peers are

neighbor if their space spans overlap along (d-1) dimensions and about along one dimension.

In the following figure, the square stands for a 2-dimension CAN virtual space. In this

example peer A is peer B’s neighbor because A’s zone is overlap with B’s zone along the

vertical dimension and about along the horizontal dimension.

A message routing includes the coordinates of the CAN virtual space. The destination

peer is whose zone covers the target coordinate. The routing is done simply by greedy routs

the message to its neighbor, whose zone is closest to the destination peer. Suppose the peers

is uniform distribute to the CAN virtual space, the average routing length is O(n1
d
) (d is the

dimension of the CAN virtual space and n is the number of peers in the overlay network)

2.1.2 Network Construction in CAN

When a new peer joins CAN, it is assigned a zone, which it is responsible for. The zone

allocation is dynamic. A new peer gets its zone by a existing peer splitting its own space,

remaining half and handing the other half to the new peer.

There are three steps involve in the join procedur

• Find a peer that is already in the CAN.

• Using routing mechanisms, it would find a peer whose zone will be split.
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• Finally, the neighbor of the split space must be notify so that future routings can

include the new peer.

2.1.3 Zone Assignment

The new peer randomly chooses a point P in the space and sends a JOIN message request

destined for the point P . This message can start from any peer in the CAN overlay network.

Then peer uses the CAN routing mechanism to forward the message to P . The message

forwarding keeps on until the message reaches the peer in whose zone P lies.

The current occupant peer then splits its zone in half and keeps one half as its new zone

and gives another to the new peer. The split must make the peer uniform distribute to the

CAN virtual space. For example, in 2-dimension CAN, split is first split along the vertical

dimension and at the next time horizontal dimension is selected and so on. When peer

leaves, the zone is remerged. A leaved peer give back its zone to one of its neighbor. Some

other DHT also use the dynamic virtaul space partition scheme like CAN, such as P-Gird

[9].

Routing example:

1. The new-joining peer must find a peer already in the CAN network. In this example,

the new peer first contacts with peer No.1.

2. The new peer selects coordinate (x, y) as its destination.

3. Then peer No.1 invokes the CAN routing procedure to send the JOIN message.

4. Each peer greedy forwards the JOIN message to the closest neighbor according the

destination’s coordinate.

5. Finally the message arrived peer No.7, then peer No.7 splits its zone to half and assigned

one half to the new peer. (see the figure below)

8
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Figure 2.4: Gnutella

2.2 Gnutella

Gnutella [10] is a peer-to-peer protocol designed for file sharing. It works by broadcasting

the queries with a given non-zero TTL to all the neighbors.

Since Gnutella is a unstructured overlay network, the querying peer does not know which

peer might be sharing the desired file, all it can do is to broadcast the query to all it’s

neighbors. If the keyword is popular, then many matching objects can be found in a few

levels. If the keyword is unpopular, peer has to set the TTL of the Query to a large number

within the informal limit imposed by the clients in the Gnutella protocol. Thus, the Gnutella

system causes a lot of network load during a query.

Current research [11], [12] shows that queries in Gnutella network also has a high locality.

Based on this high locality property, caching schemes [13] are proposed to further improve

the Gnutella performance.

Unlike Gnutella, some unstructured peer-to-peer networks use a breadth first search

instead of a depth first search [14], [15]. They also use some statistical scheme to improve

system performance.
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Figure 2.5: Napster

2.3 Napster

Napster [16] is a legend of the peer-to-peer application. It is designed for music sharing.

Actually Napster is not a pure peer-to-peer system. In Napster, each peer connects to

a central Napster server. Napster server keeps the meta data of all objects. The indexing

and searching is centralized. When a new peer joins the Napster system, the peer sends

the metadata, which describes all the objects it has to the Napster server. Every search

request is first sends to the Napster server. When receiving search request, the Napster

server searches its database built with metadata sent by peers. The search result is a list of

URL, which reference to desired objects. User then downloads the file directly from the peer

according to the returning URL list. From the indexing perspective, Napster is a centralized

system. Only files are transmitted from peer to peer.

2.4 Distributed Join Using Bloom Filters

A search for a single keyword consists of looking up the keyword’s mapping in the index

to get all of the objects containing that keyword. A “AND′′ query consists of looking up

the sets for each keyword and returning the intersection. In traditional search engines, only

a small subset of the matching documents is returned. Though in the distributed inverted

11
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Figure 2.6: simple intersection

index system, this operation involves contacting several inverted index servers across the

wide area, and each intersection consumes network bandwidth and latency. For example,

client invokes a query “A∩B′′, and the inverted index of “A′′ is maintained by Server Sa and

the inverted index of “B′′ is maintained by Server Sb. Client first contacts Sa and A sends

the temporary result 1, 2, 3, 4 to Sb. Sb then intersection 1, 2, 3, 4 with its inverted index

(inverted index about keyword “B′′), and then send the result 3, 4 back to client. This naive

approach is not efficient because it sends large number of data across the network.

Patrick Reynolds and Amin Vahdat [17] proposed a scheme using bloom filter [18] to

reduce the transmission overhead. Fore example, to compute the result of a query consisting

of more than one keyword, the client first send its request to Sa. Then Sa sends a F (A)

(F (A) is a Bloom Filter based on its list of inverted index for A) to a server Sb that contains

the inverted index for the other keyword “B′′. Upon receiving a bloom filter, Sb intersects

the filter with its list of documents for “B′′ and sends the intersection: B ∩ F (A), back to

the node Sa. The node Sa then computes A ∩ B ∩ F (A) which is the result for the query

A ∩B.

Since the bloom filter is much smaller than the list itself. Sending bloom filter instead of

index itself greatly reduce the transmission overhead. Ocean Store [19] also use bloom filter

as its basic search scheme.
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2.5 Peer-to-Peer Prefix Search

Since the absence of keyword search is DHTs’ characteristic, Baruch Awerbuch and Chris-

tian Scheideler propose a compromise solution [20]. It combines existing (non-searchable)

distributed data structure in a transparent and consistent way to support the prefix search.

The upper layer is a chord-like DHT (such as SPRR [21], Skip list[22] or Chord[7]). Each

object is inserted as one node in this chord-like DHT and ordered by its name. Because all

objects in the network are linked according to lexicographic order, it’s easy to support prefix

search by routing search request along the chord-like ring until some objects is found.

The lower layer is responsible for organizing peers. It works like a typical DHT, which

maps a key to an object. In this layer, a node stands for a peer in network. The lower layer

linked all the online peers together and provides a communicate functionality. Using the

DHT message routing mechanism, every peer can send message to any others easily.

The two DHT overlay works as fellows: Given a prefix, upper layer invokes a routing

procedure to send a query message. This query message is sent to a node which covers the

prefix.

When the routing is done, matching object’s reference can be retrieved, and then the

13



001


110
 010


101


100


011


aa


ab


bb

ac


ba


cc


ca


Figure 2.8: the PnP scheme

client can download desired objects.

Note the upper layer only maps a prefix to a virtual name space ([0, 1]), it knows nothing

about physical network address. During each hop of upper layer’s routing, another routing

in lower layer is needed. The lower layer maps a virtual address ([0, 1]) to physical network

address, so the upper layer can foward routing messages to next hop actually.

2.6 Keyword Set Search (KSS)

The keyword-set search (KSS) [23] system proposed by O. D. Gnawali works on a generalized

DHT to support keyword search. The main idea of KSS is simple: since the DHT maps one

ID to one object, if we bind every keyword set in a object’s name to this object, then anyone

of them could be used to locate the original object.

2.6.1 System Model

In KSS, an object o is given a keyword set Ko. In typical DHT, only the full object name

is bind to the object. To support keyword search, every subset of Ko is bind to the object.
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Because most queries are short, it’s not worth inserting every subset (the power set) of the

Ko. In KSS there exists a globally known parameter S, which stands for the threshold of

the keyword set length. Only sets whose length are not longer than S need to be inserted.

In an extreme case, when S is bigger than any keyword sub-set length, all n2 keyword sets

(power set of Ko) are inserted. Currently KSS applications set S to be two, making an

object indexed in O(|Ko|2) inverted index.

2.6.2 Insert and Delete

Suppose an object has a keyword set Ko = kw1, kw2..., kwn and S = 2. To insert this object,

all sub-set: Ki(i = 1 n) and Ki, Kj (for all i, j — 1 <= i < j < n) is inserted into the

network. To delete the object, all involved peers are contacted and all those inverted index

entries are removed.

2.6.3 Query

To resolve a query q, which has a keyword set Kq = kw1, kw2..., kwn. First partition Kq into

arbitrary mutual exclusive keyword sets, each of which is no longer than S (for example,

kw1, kw2, k1, k3...), Use each of them as query key and the final result is the intersection of

their results. KSS further improves the performance of query by piggyback the full Ko with
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the keyword set in every inverted index entries. This makes peer able to provide the final

result via a local lookup.

2.6.4 Storage overhead

If parameter S is set to be the infinite, making any possible combination of keywords an

index, the insert operation will cost very much. Though KSS assume the infinite storage, in

practical it is impossible to have infinite storage. To make a long story short, KSS trades

the costs of storage for query efficiency.

2.6.5 Load Balancing

If the system are configured to use only length-2 keyword set, KSS actively prevents the hop

spot problem. This is because queries containing a certain popular word k can be serviced

by some other peers, which k ,* maps to rather than only by the peers, which k maps to.

Though in this configuration, length-1 queries are not supported.

2.7 PeerSearch

Peer Search [24] builds IR models on top of the CAN overlay networks. They propose VSM

(vector space model) and LSI (Latent semantic indexing) as the candidate IR models.

2.7.1 Vector Space Model (VSM)

In VSM [25], objects are represented as term vectors. Each element in the vector corresponds

to the importance of a keyword in the object description or query. The importance of a key-

word is often computed using statistical TF ∗ IDF (term frequency * inverse document

frequency )scheme. Term frequency in the object and term frequency in other documents

decide the importance of this term in an object. If a term appears in an object with a high

frequency, there is a good chance that the term could be used to differentiate the document

from others. However, if this term also appears in many other objects, its importance is low.

In processing a query, a common measure of similarity is the cosine of the angle between

vectors. Given two vector, X = (x1, x2, ..., xl) and Y = (y1, y2, ..., yl), the similarity be-
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tween them is defined as cos(X, Y ), which denotes the angle between vector X and Y . Note

that X and Y are normalized, which means |X| = 1 and |Y | = 1. The similarity is simply

the inner product of the two vectors.

cos(X, Y ) =
X � Y

|X| · |Y |
= ΣXiYj

2.7.2 Latent Semantic Indexing (LSI)

The VSM model suffers from noise in object. To solve the problem, the LSI [25] models uses

statistically derived conceptual indices instead of terms for retrieval. It uses singular value

decomposition (SVD) to transform a high-dimensional term vector (derived from VSM) into

a lower-dimensional semantic vector. Projecting the vector into a semantic subspace does

this transformation, and after the transformation, each element in semantic vector presents

an importance of a concept in the object or query. LSI uses cosine of two vectors to presents

similarity between two objects, the same with VSM’s approach.

2.7.3 Basic Algorithm

P-LSI sets the dimensionality of the CAN to be equal to that of LSI’s semantic space.

Inverted index for objects are inserted in the CAN using its semantic vector. The inverted

index includes the semantic vector of a document and a object reference to the object.

1. When receiving a new document Aa, the engine peer generates its semantic vector V a

using LSI and uses it as the key to insert the inverted index entries in the CAN.

2. When receiving a query q, the engine peer generates its semantic vector V q and routes

the query using Vq.

3. Upon reaching the destination, the query is flooded to peer within a radius r, deter-

mined by the similarity threshold or the number of wanted documents specified by the

user.

4. All peers that receive the query do a local search using LSI and reports the reference

to the best matching documents back to the user.
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2.8 Peer-to-Peer Keyword Search Using Keyword Re-

lationship

The Keyword Relationship Search System [26] is a peer-to-peer keyword search system, which

increases possibility of discovering desired objects. It’s key mechanism is query expansion,

which means adding relevant keywords to the original query. This query expansion is based

on a keyword relation database (KRDB), which is managed in a distributed fashion by

participating peers. The KRDBs is improved through search and retrieval processes and

each relationship are shared among peers holding similar objects.

2.8.1 KRDB

Each peer maintains its own KRDB. In initial state, peer keeps information about keyword

relevant only to objects stored locally. For each pair of relevant keywords, two entries are

kept. The keyword relation: KR and its strength: KRStr. Keyword relation is transitive.

For example, if the value of KRStr(F, E) * KRStr(E, I) is larger than a system-wide

threshold, a relation between F and I is created.

2.8.2 Search

The query message is propagated in the same way as traditional unstructured peer-to-peer

system. Peer received the query message appends some relevant keywords according to its

own KRDB, and uses the expanded query to search it’s local objects and returns matching

objects to the searcher. Then if the message’s TTL is still not reduced to zero, the peer

forwards the original query to the next hop and so on so forth. Peer only forwards origi-

nal query because consecutive query expansions lead to query explosion with less relevant

keywords.

2.8.3 Distributed KRDB Updates

Because query expansions are done according to distributed KRDBs. The accuracy of

KRDBs significantly affects search performance. Therefore KRDBs are required to be up-

dated and kept as accurate as possible. Two mechanisms are used to updates the KRDB;
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evaluation feedback and KRDB synchronizations.

The evaluation feedback works as fellows. Suppose a searcher initials a query contains

keyword ki, and during the query procedure, keyword kj is used to expand the query and

an object with keyword ki and keyword kj is found. If searcher selects this object, the

relation KR(Ki, Kj) is regarded as helpful and KRStr(Ki, Kj) is increased, otherwise it

is decreased instead. Keyword relations whose strength falls below a system-wide threshold

are deleted from KRDB. KRStr(Ki, Kj) is defined as:

KRStr(Ki, Kj) =
HelpfulCnt(Ki, Kj)

UsedCnt(Ki, Kj)

The UsedCnt records how many objects are found by expanding the query with rela-

tion KR(Ki, Kj), and HelpfulCnt(Ki, Kj) records how many times the found objects are

regarded by searcher as helpful. During a query, peers involved in the procedure use feed-

back messages to notify each other and update their KRDB according to the equation listed

above.

However, evaluation feedback has two drawbacks. First, evaluation feedback only evalu-

ate existing KRs, which are extracted from local data items. Second it would take a long

time to make the value of KRStr statistically meaningful. For this reason, peers with short

lifetime or the peers that have just begun to expose new objects cannot provide accurate

KRDBs soon.

Another mechanism called KRDB synchronization is used to overcome these drawbacks.

KRDB synchronization works as fellows. First peers use broadcasting message to find other

peers, who have enough common keywords in their KRDB. Then they synchronize with each

other. The synchronization procedure has two steps; (1) If one peer has KRs relevant to

another peer, those KRs are added to another peer’s DRDB. (2) If these two peers has some

keywords relation in common, the one with bigger UsedCnt are considered as statistically

more correct, and they both update their KRStre to the more correct one.
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Chapter 3

Keyword Search Scheme

3.1 Resource Sharing in Peer-to-Peer Environments

Current research for peer-to-peer networks [12] show many characteristics different from

traditional information retrieval systems. Some characteristics are listed below:

• Most shared objects are in binary format such as musics, movies or applications.

• Users look up resource much more often than share resource.

• Most objects are described by a short title which contains only a few keywords.

• Most queries contains no more than two keywords.

• The distribution of keyword popularity is mostly stable.

• Most users do not need an exhausted search.

Our goal is to utilize these characteristics to design a high performance peer-to-peer

system.

3.2 Basic Idea

A CAN network is structured as a d-dimension virtual coordinate space, where each peer

node is assigned to a zone in the space. The ASP scheme maps a keyword to a region, which

consists of one or more zones. Each object related to a given keyword is inserted into a

peer randomly selected from the keyword’s region. To lookup objects related to the same
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keyword, a peer is randomly selected from the same region as a starting point, which then

searches its neighborhood by flooding. Because objects with the same keyword are inserted

into the same region, objects have good keyword locality and can be found easily.

3.3 Challenges

Although our scheme is simple, there are many issues we need to consider:

• Load balancing

The object related to a keyword and the query related to a keyword is not uniformly

distributed. How to assign regions to keywords and achieve load balancing is a big

problem.

• Network Traffic Load

Flooding messages cost a lot of network bandwidth. Stop conditions of flooding

message greatly influence the system performance. Simply use a application defined

TTL(time to live) as the flooding stop condition does not work well.

• Incremental Results

The number of matching objects for any given keyword is roughly proportional to the
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number of objects in the network. Thus, the cost of returning all matching objects to

searcher grows linearly with the size of the network. Fortunately searchers rarely need

all revelant objects in network. By using streaming transfers and returning only the

desired number of results, we can greatly reduce the amount of data that needs to be

sent. This is, in fact, critical for scalability:

• Query Performance

Query is the most often operation in the peer-to-peer keyword search system, much

more than object insertion. Good system designs trade insertion overhead to optimize

the query efficiency.

• Robustness v.s. Scalability

A flooding system is very robust, and is also efficient when the number of peers is small.

On the other hand, a DHT system is scalable when the number of peers is large. Our

system combines these two schemes in a dynamic way, thus when the network is sparse,

it works like a flooding system, and when the network size grows up, it become more

like a DHT.

3.4 Region Assignment

The region assigment scheme determines the load balancing of the system. The region of

a given keyword is calculated with the keyword’s frequency. So, peers need to know the

frequency of each keyword in advance.

Assumption:

A peer can locally estimate keywords frequency both in objects and queries.

Those estimations do not need to be very accurate, but accurate estimations make the

ASP system more efficient.

There are two ways to support this assumption. The first one is to use piggyback mes-

sages. In CAN, peers exchange messages periodically to maintain the network topology.

Peers piggyback keyword statistics to those messages, and they also keeps all messages re-

ceived from other peers whatever it is online or not. Those hitorical messages are used to
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estimate keyword frequency. Another approach, as we explain later, is to use a globally

unique profile. Each approach has advantages and disavantages.

Our goal is to distribute the keyword inverted index to the CAN virtual space according

to its frequency to achieve the load balancing.

Peers need two statistics, which are list bellow:

• Keyword frequency for insertion - IFreq(keyword):

occurrence of the given keyword in objects/

number of words for all inserted objects

• Keyword frequency for query - QFreq(keyword):

occurrence of the given keyword in queries /

number of words for all queries

Frequency of a keyword is defined as fellows:

Freq(keyword) = α · IFreq(keyword) + (1− α) ·QFreq(keyword)

where 0.0 <= α <= 1.0

There is a hash function:

Hash(keyword)− > v = c1, c2, c3...cd

where d is the dimension of CAN, and for each i ∈ 1, 2, 3...d, 0.0 <= ci <= 1.0 This hash

function maps a keyword to a vector. Each element in the vector stands for a coordinate in

one dimension. For example, ci is a coordinate in dimension i.

Then we design a size function:

Size(keyword) = Freq(keyword)
1
d · β

where β is simply a scale factor. The size function determines how long the region of that

keyword crosses each dimension.
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Finally, the Region function is defined as fellows:

Region(keyword) = {

(c1 + 1
2
· Size(keyword), c1 − 1

2
· Size(keyword)),

(c2 + 1
2
· Size(keyword), c2 − 1

2
· Size(keyword)),

... ,

(cd + 1
2
· Size(keyword), cd − 1

2
· Size(keyword)),

}

The region is define so that

Region(keyword)

total − space
= β · Freq(keyword) ∝ KeywordFrequency

Note the region of different key-word may overlapped.

3.5 ASP Interative Deepening

The ASP iterative deepening scheme is designed to decrease network load and support incre-

mental results. We use a modified iterative deepening [27] called ASP Iterative Deepening

as our flooding scheme. It works as fellows; Define MAX as a system parameter, which is

the threshold of the number of flooded peers during a query. When the number of peers in

a group is no more than MAX, they can communicate using flooding efficiently.

Because peers in CAN are uniformly distributed, peers can also use the piggyback mes-

sage to estimate peer density . Define

Npeers(region): the number of peers in a region

The ASP interative deepening works as follow:

1. Start peer broadcasts the search message to its neighbors, which is implied by B in

figure.
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2. Peers in B search its local inverted index entries and return matching ones.

3. Peers in B also return the peer addresses in A, which are neighbors of neighbors of

start peer.

4. Start peer evaluates the number of the found objects. If its equal or more than

USERWANTED, the flooding stops. If not, it sends broadcast messages to peers

in A directly.

This process continues until more than USERWANTED objects have been found or

the boundary of keyword region has been reaches. Three conditions stop the start peer

forwarding flooding messages.

• More than USERWANTED objects have been found.

• Neighbor peers is outsize of keyword’s region.

• More than MAX peer has been flooded.

3.6 Basic Insertion

To insert an object, first stem each keyword in the object title to a normal form. In this

procedure words whose frequency are bigger than a system parameter: FREQMAX are
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regarded as useless and are ignored. Then each meaningful keyword is stemmed to a normal

form. Stemming is a process for removing the commoner morphological and inflexional end-

ings from words in English. Its main use is as part of a term normalisation process that is

usually done when setting up Information Retrieval systems. In this thesis, we use Porter’s

Stemming Algorithm [28] as our stemming scheme. Other stemming algorithms can be used

too. After the stemming, inserte this object for each keyword in its title. For example:

Object : “ What a wonderful world!”

• Step1: Filtering

Word[0] what selected
Word[1] a Freq(“a′′) > FREQMAX, Ignored!
Word[2] wonderful selected
Word[3] world! selected

• Step2: Steming

Word[0] what
Word[1] wonderful stem to “wonder′′

Word[2] world! stem to “world′′

• Step3

For each of the region: region(“what′′), region(“wonder′′), region(“world′′), randomly

select one peer in the region and insert one inverted index entry in it. The peer selected

in region(“what′′) keeps record like that:

prefix object title
what what a wonderful world!

The peer selected in region(“wonder′′) keeps recorder like that:
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prefix object title
wonder what a wonderful world!

The peer selected in region(“world′′) keeps recorder like that:

prefix object title
world what a wonderful world!

3.7 Basic Lookup

Suppose the query string is: “whata ∗ wonderful∗′′,

• Step1: Filtering

Word[0] what selected
Word[1] a Freq(“a′′) > FREQMAX, Ignored!
Word[2] wonderful selected

• Step2: Steming

Word[0] what
Word[1] wonderful stem to “wonder′′

• Step3: Expansion

Extend the query to this form:

prefix filter
what what a * wonderful *

wonder what a * wonderful *

• Step4: Request Routing

The object: “what a wonderful world!” can be found using ether in region(“what′′) or

region(“wonder′′), though search from the lower frequency keyword is more efficient.

27



Because keywords with lower frequency may have smaller region and have lower cost

for flooding.

Suppose the keyword “wonder′′ have lower frequency, then the search peer randomly

select one peer A in region(“wonder′′) and sends a query request to peer A. This

query request is routed to A using the CAN routing scheme.

• Step4: ASP Iterative Deepening

The peer received the query request initials an iterative deepening procedure and re-

turns the search results to searcher.

• Results

1 What a wonderful world
2 What a wonderful car
3 What a wonderful dog

3.8 Adaptive Space Partition

Because keyword query is a zipf-distribution, a few words may have very high frequency,

which makes its region contains more than MAX peers. In this case, additional parti-

tions are needed. In the previous example, inverted index entries entries are inserted to

region(“what′′), region(“wonderful′′) and region(“world′′). Suppose the there are too

many peers in region(“what′′), so this region is too big to flood efficiently. It causes no

problem because this object can still be easily located by other regions of low frequency

keyword. Even queries only contains high frequency keyword can still find lots of relevant

objects to that keyword. It still makes sense because users only want to get objects related

to the high frequency keyword and they do get them efficiently.

For example, suppose the keyword “what′′ have a very high frequency, which makes the

number of peers in region(“what′′) larger than MAX. This means region(“what′′) cannot

be efficiently searched using flooding message. However, inverted index entries can still be
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easily found using region(“wonderful′′) or region(“world′′). For the most part, inserting

first level inverted index only is good enough.

Problem happens when there are more than two high frequency keywords in the object

title. In this case neither of them two (high frequency keywords) can be used to locate this

object efficiently. Thus besides the first level inverted index; second level inverted index

is also needed. That is what we called Adaptive Space Partition. For example, suppose a

object, whose title is “whatwhen′′, is inserted.

In this case nether region(“what′′) nor region(“when′′) can be efficiently searched. To

solve this problem, the second level inverted index is inserted as fellows.

We randomly select one peer in region(“what′′, “when′′) and insert entries:

prefix full title
what,when what,when

And then randomly select one peer in region(“when′′, “what′′)

prefix full title
when,what what,when

The sub-region used the first level region as its base-region and is mapped the same as
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Figure 3.5: after partition
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the first level region. If the number of peers in region(“what′′, “wonderful′′) is less than

MAX, then we are done, otherwise the space partition procedure is recursively invoked.

Because most keywords whose frequency are very high may be consider as meaningless

and are ignored during the stemming step. We excepted most partition are finished within

two levels.

Note that there’s no routing overhead for this adaptive space partition because all cal-

culations can be done locally.

The ASP insert procedure is defined as fellows:

boolean meaningless(keyword)

{

return freq(keyword) > FREQMAX;

}

boolean toobig(region)

{

return containpeers(region) > MAX;

}

void addObject(title)

{

for ( all keyword kw in title )

{

if meaningless(kw)

title = title− kw;

else

title = title− kw + stem(kw);

}

for ( all keyword kw in title )

asp(””, kw, title, canspace);

}
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void asp(prefix, kw , title, baseregion)

{

region = map (kw , baseregion);

prefix = append(prefix, main);

insert(prefix, title, region);

if (toobig(region))

{

title = title− kw;

for ( each keyword okw in title ) // okw stands for other keyword

{

oregion = map(okw, baseregion);

// for each keywords pair whose keywords are both maped to big region

if (toobig(oregion))

asp(prefix, okw, title, region);

// use region as new baseregion and recursively invoke asp()

}

}

}

The query procedure is defined as fellows:

void query ( query )

{

region = canspace;

while ( query is not empty)

{

kw = maxfreqkeyword(query);

query = query − kw;

prefix = append(prefix, kw);

region = map(next, region);
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if ( !toobig(region) )

break;

}

flood(region, prefix, query);

}

3.9 Step by Step Example

In this section, we show a step-by-step example to show how the adaptive space partition

procedure works in detail. Suppose a ASP system currently has a configuration like that:

PEERS 1000
MAX FREQ 0.04

MAX 10

Now we insert an object, whose title is a b of c d , and the keyword frequency is like

that:

a 0.01
b 0.02
of 0.05
c 0.03
d 0.04

Because Freq(“of ′′) = 0.05 > MAXFREQ = 0.04, in the level-1 space partition, only

four inverted index entries are inserted:

Level-1 Inverted Index

prefix object title containpeers action
/a a b of c d 1000 ∗ 0.1 = 10 10 < MAX, done!!
/b a b of c d 1000 ∗ 0.2 = 20 need level-2 partition
/c a b of c d 1000 ∗ 0.3 = 30 need level-2 partition
/d a b of c d 1000 ∗ 0.4 = 40 need level-2 partition
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In the level-2 space partition, six inverted index entries are inserted:

Level-2 Inverted Index

prefix object title containpeers action
/b/c a b of c d 20 ∗ 0.3 = 6 6 < MAX, done!!
/b/d a b of c d 20 ∗ 0.4 = 8 8 < MAX, done!!
/c/b a b of c d 30 ∗ 0.2 = 6 6 < MAX, done!!
/c/d a b of c d 30 ∗ 0.4 = 12 need level-3 partition
/d/b a b of c d 40 ∗ 0.2 = 8 8 < MAX, done!!
/d/c a b of c d 40 ∗ 0.3 = 12 need level-3 partition

In the level-3 space partition, two inverted index entries are inserted:

Level-3 Inverted Index

prefix object title containpeers action
/c/d/b a b of c d 12 * 0.2 = 2.4 2.4 < MAX, done!!
/d/c/b a b of c d 12 * 0.2 = 2.4 2.4 < MAX, done!!

No further space partition is needed, we are done.

3.10 Improved Query Operation

The query can always successfully locate all desired objects if two conditions are satisfied.

• The keyword frequency used in query operation is higher than the one used in insert

operation.

• The query string contains enough keywords to partition the CAN space to a region

which contains no more than MAX peers.

If condition-1 is not met, query may fail to locate some desired objects available in

network. For example, suppose one peer inserts an object: OBJ to network. OBJ con-

tains a keyword: KW so the owner peer uses OwnerFrequency(KW ) which is locally
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estimated by the owner peer to calculate region(KW ). Then the owner randomly se-

lectes an insert point to insert one inverted index entry for keyword: KW . Later, an-

other peer wants to search objects revelant to the keyword: KW . The search uses frequency

QueryFrequency(QFREQ) to calculate region(KW ) and flood query message in it. Unfor-

tunately OwnerFrequency(KW ) is bigger than QueryFrequency(QFREQ) and the insert

point falls beyond the region calculated by query peer. As a result, the query operation may

fail to locate this object.

To solve this problem, one approach is to make all peers use the same frequency. In

this scheme, peers use a global keyword frequency profile, and each peer keeps a copy of this

profile. This profile may record only top−N keyword frequency. During insertion and query,

peers all use this profile to determine the keyword frequency. Since all frequency estimations

are the same, the problem mentioned above does not occur at all. This profile is updated

periodically and as we mention above, the keyword distribution in peer-to-peer environment

is very stable, thus this profile need only very low update frequency. This approach works,

but it need some global knowledge, and may be unacceptable in some situations. Another

way is to use a flooding scale factor, this approach cannot eliminate all failure possibility,

but it increases the possibility to success. It utilizes the flexibility of flooding. It works as

fellows; during a query, the area of the target region and MAX is multiple to a flooding
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scale factor. Scale factor makes the query region bigger and is more likely to cover the insert

point. Now we discuss condition-2. If condition 2 is not met, query message cannot flood to

the whole target region because of the MAX limit. This causes no problem in most cases.

Because objects contains this desired keyword is equally distribution in the region. The

expected number of found objects is the same wherever the part to flood.

Problem occurs when the inverted index density is very low, and the query peer wants

to find large number of objects, thus query peer may fail to locate enough objects using

only one query operation. In this case, all the query peer needs to do is simply invoking

the query operation more times. Because different query operation floods query message to

different portion of the region and thus get more desired objects, peer keeps on invoking

query operation util it found enough objects.

3.11 Persistence Object and Network Expansion

When the number of peers increases, the density of peers increases too. This makes some

keywords’ region become too big to flood. In most cases, it makes no problem because in

pratical peer-to-peer environments, object’s life is much shorter than network, the network

size is almost stable during an object’s life. Though some applications expect objects to
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be persistent. In this case, further space partitions are needed. The problem is: who is

responsible for monitoring the network expansion and insert more inverted index entries

when needed.

During an object’s life, three classes of peers are involved:

1. Peer who stores the object

2. Peers who store its inverted index entries

3. Peers who want to locate (invoke query procedures) the object

In our scheme, it’s class-one peer’s responsibility to make the object’s inverted index

entries consistent. To share an object with others, class-one peer first uses the ASP scheme

and inserts some inverted index entries to network. The peer also records the inverted index

entries it just inserts in. Then the peer periodically recalculates regions for each inverted

index entries. If there are some regions becomes too big because of network expansion, the

peer partitions them and inserts addtional inverted index entries.
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This monitoring procedure is done periodically and random. It makes no network band-

width overhead because it is just a local computation. Furthermore, since object’s life is much

shorter than network, it’s good enough to invoke monitoring procedures in low frequency.
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Chapter 4

Simulation and Analysis

We write a simulator to build a virtual ASP environment, and use titles of mathematical

books in library as data source. Our simulation runs both on batch mode and animation

mode so we can see how it works in detail. For each experiement, first we setup system

parameters and the data type we want to gather, then we start a simulator batch task, the

batch task loads all objects and queries in the data source and uses each of them for insertion

and query. During each object insertion and query, the simulator also records datas we want

to measure.

The simulator exports a simulation report when the batch task finished. Finally we use

analysis tools to analyse those simulation reports and generate statistical disgrams.

4.1 Data Source

Our data source is extracted from information systems in Taiwan University Library and

contains about 20,000 book records and 19,000 query logs. We use it as data source because

it’s a very typical zipf-distribution, just like files shared in peer-to-peer environment.

Some object examples are listed below:
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Object Example
Elements of functional analysis

Second order partial differential equations of mixed type
Partial differential equations an introduction

Schaum’s outline of theory and problems of linear algebra
Logic programming proceedings of the 1991 international symposium

Some query examples are listed below:

Query Example
stochastic integrators equations

Hamiltonian
systems intelligent

Meta-level
Differential

4.1.1 Keyword Distribution

The average length of book titles is 7.421 words. Keyword distribution in book titles is listed

below.

The average length of queries is 1.766 words. Keyword distribution in queris is listed

below.

As we can see from those figures, both objects and queries are both zip-distributions.

4.2 System Parameter

The system parameter is defined as fellows:

• PEERS: Number of peers

• MAX: Max number of flooded peers

• HASH: Hash function which maps a keyword to a value between 0 and 1. Its value is

ether “MD“ or “SHA“

• MAX FREQ: Max frequency of meaningful keyword; Keyword whose frequency is

larger than MAXFREQ is regarded as meaningless and thus is ignored.
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Figure 4.1: Object Keyword Distribution
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Figure 4.2: Query Keyword Distribution
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• FLOOD SCALE: the flood scale factor, which is used to increase the probability of

successful search.

• USER WANTED: The average number of objects a searcher wants to find during one

search operation.

4.3 Insertion Overhead

The number of inserted inverted index entries determines the main overhead of object inser-

tion. To analyze the scalability of object insertion, we first build the CAN overlay network

on different sizes, and then run a simulator batch task. The simulator batch task parse the

data source file and insert each object in network. Simulator also recorded the total number

of inverted index entries. System parameter and simulation results are listed bellow:

PEERS 10000, 20000 ... 100000
MAX 50 100 150
HASH “MD5“

MAX FREQ 0.02

As we see in the figure, the number of total inverted index entries is sub-linear and grows

slower than the number of peers. Furthermore, when the MAX paremeter is increased, the

number of inverted index entries decreases. Because big MAX means big flooding area,

which makes the adaptive space partition procedures stop earlier. Note there are about

20, 000 objects records and the average title length is 7.421. In the worst case (MAX =

50, PEERS = 100000), the total number of inverted index entries is about 500, 000. and

each object insertion need about 25 inverted index entries and each keyword need about 3.3

inverted index entries on average.

In pratical peer-to-peer sytems, the number of total objects grows linearly with the

number of peers. If the total number of shared objects can be measured as O(PEERS), the

number of objects maintained by a peer is roughly a constant.

OnePeerLoad =
O(PEERS)

PEERS
= C

In our experiment, the number of objects is static. So we use the total number of inverted
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index entries to measure the insert overhead instead of the average number of inverted index

entries for one peer.

The experimental results are listed below:

number of peers max = 50 max = 100 max = 150
10000 174891 130077 120431
20000 225055 174891 143951
30000 276503 196609 174891
40000 319569 225055 194887
50000 342335 245815 207335
60000 376247 276503 225055
70000 405105 299913 237669
80000 429917 319569 254635
90000 465285 328447 276503
100000 489283 342335 290077

4.4 Query Overhead

A query operation contains two parts. The first one is a CAN routing procedure. The second

is our ASP iterative deepening. The overhead of the first one is determined by underplaying

CAN and CAN’s system parameter so we did not discuss it. We focus on the number of

flooded peers for each query.

First we build a 30, 000 peers network. Then we analyze the scalability of the ASP inter-

active deepening. The simulator parses the query logs and use those query strings to invoke

the ASP query operation. Our simulator also calculates the average number of flooding peers

for a query. We run this simulation on different USERWANTED to see the overhead of

the ASP interactive flooding. System parameter and simulation results are listed bellow:

PEERS 30000
MAX 50, 100, 150
HASH “MD5“

MAX FREQ 0.02
USER WANTED 5 10 15 20 25 30 35 40 45

Note the average number grows with USERWANTED sub-linearly and is much less
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Figure 4.3: Number of Inverted Index
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Figure 4.4: Number of Average Flooded Peers

than MAX. Because in the ASP iterative deepening, three conditions stops flooding; key-

word region boundary, USERWANTED and MAX. Even in the worst case, no more than

MAX peers are flooded in a single query operation. When the number of peers grows up,

the ASP iterative deepening would not run out of network bandwidth

The experimental results are listed below:

number of flooded peers peers = 50 peers = 100 peers = 150
5 6.98 8.54 8.95
10 8.84 10.97 11.84
15 9.89 12.74 14.11
20 10.82 14.13 15.8
25 11.63 15.42 17.37
30 12.29 16.34 18.1
35 13.09 17.18 19.41
40 13.75 17.96 20.21
45 14.44 18.68 21.24
50 15.09 19.18 21.88
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Figure 4.5: Peer Loading Distribution

4.5 Peer Loading Distribution

In this experiment, we analyse load balance of the ASP scheme.

PEERS 1000
MAX 100
HASH “MD5“

MAX FREQ 0.02

To obtain a smooth distribution curve, we use the system parameters listed above to

run the simuation 100 times and calculate the average loading distribution. The number of

inverted index entries is 120285. The x-axis values are number of inverted index entries. The

y-axis value means how many peers stores this particular number of inverted index entries.

As we see in the figure, the peer loading distribution has a long converge curve. This is

because of the zone distribution in CAN. Everytime a new peer enters the CAN network,

one peer zone is split. This scheme makes the peer zone area a non-continous distribution.
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Figure 4.6: Peer Zone Area Distribution

Peer zones falls in separate groups. Peer zones in the same group have the same area. Peer

zones in one group have a 2n multiple area than those in other groups.

This causes no load balancing problem. Because a new peer’s insert point is randomly

selected and thus distributed evenly in the CAN virtual space. A peer with a larger zone has

a higher propability to split in the future. As the time goes by, peers in larger zone group

(larger means larger than average) have a higher probability to shift to smaller zone group,

and peers in smaller zone group have a higher probability to shift to larger zone group.

Since our ASP scheme evenly distribute inverted index entries to the CAN virtual space.

Peers with larger zone have more inverted index entries, and the number of inverted index

entries stores in a peer is propotional to the peer’s zone area.

In this example, if we separate peers in different groups, we obtain six major peer groups,

which are named as Group1, Group2 ... Group6, from left to right respectively. Their load
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Figure 4.7: Peer Loading Distribution (Group 1)

distribution figures are listed below. As we can see in these figures, peers in larger zone do

have more inverted index entries.

Like CAN, this causes no load balancing problem. Because peers who stores more inverted

index entries have higher propability to split their zone and handoff their inverted index

entries in the future, and the future handoff probability is also propotional to the number of

inverted index entries (or zone area).

ZoneArea(Peer) ∝ NumberOfIndexEntries(Peer) ∝ HandoffProbability(Peer)

4.6 Inverted Index Level Distribution

Now we analyze the level distribution of inverted index. System parameter and simulation

results are listed bellow:
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Figure 4.8: Peer Loading Distribution (Group 2)

Figure 4.9: Peer Loading Distribution (Group 3)
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Figure 4.10: Peer Loading Distribution (Group 4)

Figure 4.11: Peer Loading Distribution (Group 5)

50



Figure 4.12: Peer Loading Distribution (Group 6)

PEERS 1000 10000 100000
MAX 50 100
HASH “MD5“

MAX FREQ 0.02

Note there is almost no inverted index entry whose level is bigger than 3. This result is

the same as our expectation. Suppose the MAXFREQ is 0.02 and MAX is 100, no level-3

inverted index entry exists until

PEERS > 25, 0000 =
1

0.02
∗ 1

0.02
∗ 100

We can also use a Level Threshold to bound the number of inverted index entries, thus

even if there is a very large number of peers in network and MAX are very small, the level

of inverted index doesn’t grows infinite. The threshold causes little problem because current

research shows most users use only short query string, and most web search engines have

a average query length between 1.5 and 2.5. Furthermore, most users tend to use simple

query which contains keywords only instead of complex logic control operators. These facts
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Figure 4.13: Inverted Index Level Distribution, MAX = 50

Figure 4.14: Inverted Index Level Distribution, MAX = 100
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means inverted index entries whose level is bigger than five are much less useful because

user’s query string is just not so long.

The experimental results are listed below:

max = 50 peer=1000 peer=10000 peer=100000
1 120239 120239 120239
2 46 54652 369044
3 0 0 0
4 0 0 0

max=100 peer=1000 peer=10000 peer=100000
1 120239 120239 120239
2 46 9838 222096
3 0 0 0
4 0 0 0
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Chapter 5

Conclusion

Peer-to-peer applications have greatly broadened the possibility of resource sharing over the

Internet. With peer-to-peer applications, resource such as commercial software or unpub-

lished e.books, which were unavailable in the past can now be accessed easily. There are

two classes of peer-to-peer networks currently in use: (1) Unstructured peer-to-peer overlay

networks are simple, robust, and flexible, but can not scale well. (2) Distributed hash tables

were designed to solve the scalability and reliability problems. However, the useful keyword

searching features present in Napster and Gnutella are absent from DHTs.

In this thesis, we proposed a hybrid scheme, build on top of the CAN distributed hash

tables. Our scheme keeps the flexibility in a unstructured network and still scale as well as

a structured overlay network.

Below we summarize the contributions and futute works of this thesis.

5.1 Contributions

In this thesis, we proposed the ASP scheme, which is a hybrid keyword search system that

combines a structured and an unstructured peer-to-peer overlay networks. The ASP scheme

uses the CAN DHT for message routing and iterative deepening for keyword search. We

have two major contributions:

• The ASP scheme has several good properties: first of all, it is load balanced. Because

index entries releated to a keyword are distributed according to the keyword frequency.

The ASP scheme avoids the keyword zipf-distribution problem. Second, the ASP
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scheme is scalable and configurable. By properly setting the system parameters, the

ASP scheme can be tuned to suit different environments. Third, the ASP scheme is a

hybrid system, which has the robustness of a flooding based system but still as scalable

as a DHT. The progressive flooding further reduces the bandwidth requirement, and

thus makes lower network load than typical flooding systems. Finally, the ASP scheme

trades the insert overhead to optimize the query operation. Since query is the most

frequent operation, trade-off between object insert cost and query cost does improve

system performance.

• To evaluate the performance of the ASP scheme, we simulated a ASP network in

different environments and configurations. We evaluated the object insertion overhead,

query overhead, peer load distribution, and index level distribution. We showed that

both insertion overhead and query overhead grow sub-linearly, and the complexity of

query is optimized to be O(n
1
d ), which is the same as a CAN routing procedure. We

also showed that the ASP scheme has balanced loads. The simulation results show

that the ASP scheme does provide an efficient, scalable, and flexible keyword search

functionality for the peer-to-peer networks.

5.2 Furture Work

Despite our effort to make the ASP scheme a pratical peer-to-peer system, it is still just a

prototype in laboratory. Future developments are needed.

• The Keyword Frequency Estimation can be further analysed and improved. The most

important one is . Though we proposed two schemes in this thesis, their both have

their limitations and disavantages. It may be interesting to know each scheme’s char-

acteristics such as scalability, overhead, and estimation correctness.

• In our simulations, we used mathmatical book titles as the data source, and the number

of data entries are only 20,000. It may be interesting to gather more data, especially

the data in real peer-to-peer networks, to run our ASP scheme, and observe how the

ASP scheme works in different keyword distribution.
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• We showed that the ASP scheme has the desired properties such as scalability, load

balancing, and flexibility. But, we did not compare the ASP scheme with others

approachs. Comparisions are needed to show the advantages, disavantages, and the

applicable environments of the ASP scheme.

• A prototype of the ASP system was built, which now runs on a simulator only. It

is desirable to write a complete, fully-functional application to gather real data on a

peer-to-peer overlay network.
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