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Abstract— Synthetic network coordinates scale to es- including large-scale content distribution, routing, and
timate latencies between many physical hosts. As such,storage. In particular, network coordinates (NCs) are an
researchers are starting to include them in the set of essential component of our work on distributed database
networking tools used in real deployments. While there query optimization [20] and of Abraham’s Compact

are several algorithms for producing coordinates, none Routing [1], and are also starting to be used by one of
currently accounts for the fact that, instead of perceiving a ' ) .
the most popular BitTorrent clients [2].

single latency for each link, nodes see a stream of distinct . . .
observations that may vary by as much as three orders- Network coordinates have attractive properties and are

of-magnitude. With limited means to discern appropriate @ pPowerful abstraction: they have low overhead because
link latencies, coordinate systems are prone to high error they can interpolate non-existing measurements; their
and instability in live deployments. In addition, triangle embedding error is sufficiently low for practical applica-
violations and other dynamics can lead to coordinate os- tions; and by adjusting their observation frequency, the
\ o ' becomes explicit. Their main power is that they provide a
systems can provide sufficiently accurate, low cost answers i array of geometric primitives for solving distributed
to several types of common queries in simulation, solving .
these problems is an important step in furthering their systems _pro_bler_ns, such a§ .nearESt web cache selection,
practical use. content distribution, and efficient placement of resources.
We introduce latency filters that turn streams of latency For example, a web cache can be placed at the centroid
observations into a single approximation, andupdate filters  of all the client coordinates accessing the cache. The low
that summarize underlying coordinate change and squelch dimensionality of NCs makes a wide range of algorithms
false application updates. We show how a compact, non-from computational geometry applicable to networking
linear low pass filter can ascertaiq a clear. undgrlyjng signal problems. Their geometric interpretation also helps unify
from each link. These latency filters primarily improve e and wireless networks, making similar algorithms

racy. Then we evaluat t of change-detection_ . .
accuracy. Then we evaluate a set of change-detection, i hie 1o hoth domains and thus simplifying the
heuristics that allow coordinates to evolve at the system- .

design of heterogeneous systems.

level and initiate an application-level update only after )
a coordinate has undergone a significant change. These Network coordinate schemes have, as yet, only per-
update filtersboost coordinate stability without diminish- formed well in simulation. When run on a live sys-
ing accuracy. Both filters combined to improve network tem, the basic algorithms do not produce stable, ac-
coordinate accuracy by54% and coordinate stability by curate coordinates. The discrepancies are primarily a
96% when run on a real large-scale network. result of (a) the orders-of-magnitude variation in latency
Index Terms—Network Coordinates, Measuring La- Mmeasurements between the same pairs of nodes that
tency, Filtering, Simulations, Experimentation with real actually occur when running NCs on a real network
networks/Testbeds. and (b) the inherent impossibility of latencies to be
perfectly embedded when triangle inequality violations
exist, causing oscillations. The simulation studies have

used a derived latency matrix, typically containing the

~ Decentralized network  coordinate algorithms  takedian values for links measured over hours or days. In
inter-node latencies and embed them in a relative coorglijg paper, we describe how the addition of two types
nate space [S], [7], [15], [16], [18], [26], [27], [29]. With of filters produces coordinates that are stable, accurate,
appropriate input, they enable latency prediction betwegRq adapt to changing network conditions. As a resullt,

sets of nodes that have never communicated and allgy techniques can create high-quality NCs under “real
complex distributed systems problems to be solved 9&Qnr1d” conditions.

The authors are with the Division of Engineering and A puting NCs and show how to measure their quality,

plied Science, Harvard University, Cambridge, MA. E-mail€Mphasizing a new _metric Ca”@abi”ty and its im-
{jonathan,prp,marg@@eecs.harvard.edu . portance for applications. After this, the paper proceeds
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space, Shavitt and Tankel propose a hyperbolic embed-

Remote Application ~ding [27], and Tang and Crovella examine Lipschitz
| Latency TApp-leveICoord - coordinates [29]. A second fundamental characteristic is
Filters pdate Filter| whether or not all nodes are treated equally: whether
- \ ”””” f;}f;;el e | there is a set of landmarks that serve as reference points
§ /Q (and generally perform an intensive set of measurements
72| NC Update - a priori), or this centralized service does not exist.
1 1| Algorithm - Two secondary characteristics are periodicity and the
: T ~ existence of a decentralized implementation. Costa’s

e amemilwanod| g, PIC is described as solving once for a node’s coordi-
nate, but obviously its coordinates could be recomputed
Fig. |1 Thisb paper examines ("?l"!’hat kinds 'atenﬁy f”teorl_s Periodically. Finally, while the existence of a public
turn latency observations into useful into into network coordina . . . .
update algorithms and (b) what kinds opdate filtersonly update 8ecentrahzed_ |mplement_at|on has h?'pe_d the pOPUIa”ty
applications with significant coordinate changes. of e.g. Vivaldi, such an implementation is conceivable
for most NC algorithms.
With a working distributed implementation, these dif-

as follows: ferent types of NCs offer, to varying degrees, three main

« In Section Ill, we examine a latency distributiorpenef'tS:
that exemplifies a typical input and discuss why NC « Two nodes do not need to have communicated
algorithms experience difficulty when used without ~ previously for the latency between them to be
a static latency matrix. estimated. Because all-to-all communication is not
« In Section IV, we present a simple method for necessary, NCs scale to thousands or, perhaps, mil-
stabilizing coordinates by keeping a small history lions of nodes.
of samples associated with each link. Thigency  « NCs can continue to refine coordinates as the true
filters improve both coordinate stability and accu-  network conditions change over time. For example,
racy; however, coordinate stability remains at alevel if the latency of a link changes due to a BGP
unacceptable to most applications. route change, coordinates can adjust and restabilize
« In Section V, we differentiate between application-  quickly.
and system-level coordinates and compare foure NCs provide distributed systems with the ability
heuristics for improving application-level stability to solve problems geometrically. For example, a
while maintaining accuracy. We find that using a  node can learn of its approximate nearest neighbor

sliding window for change detection as apdate without ever communicating with it, and instead
filter allows an application’s view of its network use background gossip of coordinates (This is how
coordinates to become significantly more stable. nodes keep track of their nearest neighbor for the

« In Section VI, we build histories and application- ReLATIVE heuristic in Section V).

level coordinates into an implementation that we ryfs course, NCs are not a paean. Any embedding of
on a large network, resulting inal% improvement  nayork latencies that include triangle violations — and
in accuracy and @6% improvement coordinate 51most all non-trivial networks do — must induce a level
stability. of error. However, for the broad collection of applications
Figure 1 illustrates wheréatency and update filters that can use good approximations to their distributed
fit into a typical NC update. In Section VII we discusproblems, NCs are a solution worth considering.
related work and in Section VIl we conclude. For purposes of presentation and evaluation, we we
use Vivaldi as the canonical example of a NC update
Il. NETWORK COORDINATE ALGORITHMS algorithm. Because it has a simple, public, distributed
All NC algorithms aim to embed a characteristi@lgorithm, its use has been attempted in several projects
of a network, typically latency, into a metric spacencluding Bamboo [23], SBON [20], and Azureus [2].
but how they achieve this differs along several axeldowever, these three projects, which are the main im-
There are two fundamental differentiating characteristiggementations we are aware of, have all experienced
and two that are somewhat secondary. The geomedifficulties with accuracy and stability when run on a real
used for the metric space is fundamental: while mosetwork. Because other NC algorithms do not implicitly
work has attempted to use a low dimensional Euclideanlve the problems our latency and update filters address,



there is little reason to believe that they would not bene}(t

from the filtering algorithms we propose. ST witwy
9 = NZi=Tjl-l]
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A. Vivaldi 4 wi=(axe+((1-0a)xw)

Vivaldi models the network as a collection of springss  § = ¢, x w;
that pull on each node’s coordinate. Each node retaiss 7 = 77 + § x (|75 — T3] — lij) x w(TF — T})
its coordinatez; and its confidence in this coordinate
w; € (0,1). All coordinates are the same low dimension, _ _ _ _ _
which is fixeda priori. Nodes adjust their coordinated9- 2. Vivaldi update algorithmu is the unit vector function.
and confidences through observations of their latencies

to other nodes in the system. These observations Ca%ootstrapping the algorithm is simple. Coordinates are

be explicit pings or may be gleaned from exIStmﬁ]itially set to the origin. Each node stores a list of

trafnc.. Through SUcCessive §ample§, each npde reflnesnl “T‘ghbors i.e., nodes that it samples. It is assumed that
coordinates and increases its confidence. Like a netwQr .
node knows at least one other node when it enters

Of. Springs, coordmgtes bgcome more accurate and staﬁ%lg system. In our implementation, nodes learn new
with each successive adjustment.

;Eghbors by attaching the address of one other node to

Each node updates its coordinate and confidence Wét ch sampling messagee., through gossip, and sample
each new latency observation based on the pseudocgde. neighbors in round—Fobin order ’

shown in Figure 2. An observation consists of the remoteInstead of using a pure metric space, Vivaldi can
hode’s coordinatez;, its confidencew;, and a neyv be modified to include deight h, which changes the
measurement of the latency between the two nOdeSdistance between nodésj to ||z, — Z1|| + hi + h;. The

- . ) . . : i = i+ hj.

Zmdja F'rS:]’ a We'%.r:ijt'S a;ggndegl to th'ls ?bs?rvat'orburpose ofheightis to capture the latency of the access
as?h onL_ owlcorln ent no ez:rr:_ J ire relative 1o O?S link, while the coordinates themselves capture the long-

ang e;( tlne h). dn estﬁencle, 1S anO\INS tmore cog 'C%3ul links. Because the growing body of projects using
nodes 1o tug harder than 1ess confident ones. SECoRl 4i has tended not to use height, we did not include

they find how far off the observatlon was _from what_waﬁ’ although the techniques we present would allow for
expected based on the coordinates; this is the relative &l-use. We present results using three dimensions

ror e of this measurement (Line 2). Third, nodlapdates
its confidencew; with an exponentially-weighted moving _ _
average (EWMA). Unlike most EWMAs, however, thé>- Measuring Coordinate Systems

«, or weight given to the current observation, is not In this context, accuracy is usually measured by com-
fixed. Instead it is weighted according to how much trug@ring the difference between the expected and actual
is given to the current observation (Lines 3-4). If thifatencies for an observation. The error of a link for a
causes node’s confidence to go above one or belowarticular observatio; is:

zero, it is forced to remain in bounds (not shown). Lines
5-6 update the coordinate. Also based on the confidence
of nodesi and j, § is the pull of this observation onDepending on context, the accuracy for the system is
the coordinate. In line 65 dampens the magnitudethe sum of these quantities for all nodes, the sum of the
and direction of the change applied to the coordinaterror squared (the mean squared error), or the median for
Constantsc, and ¢, affect the maximum change aneach node. Accuracy can also be normalized by dividing
observation can have on confidence and coordinatbg,/;;; this relative error is the same quantity asin
respectively. They have the same effect as the tunikRgure 2. We use relative error as the metric of accuracy
parameter in a standard EWMA: a low valueOod5, for because it facilitates comparison of a wide range of
example, limits the weight given to any new observatidatencies.

and a high value 00).25, for example, causes faster Recently, Luaet al. proposed the definition of error
adjustments to new observations. Larger valuesdor metrics for network coordinates that better capture ap-
may weigh outliers too heavily. We found any settinglication impact [13].Relative rank losgrrl) determines

of ¢. and ¢, in this range to have minimal impact onhow well a network coordinate scheme respects the
large scale behavior. We used c. = 0.25, which are relative ordering of all pairs of neighbors. Thus, for
the same values used in the original authors’ Vivalgiach nodex, if (d,; > dyj A Ly < lyj) or (dy <
simulator [8]. d.j Nl > l;5), then the distancesbetween coordinates

e=| 7 — 7| - lij |



have to led to an incorrect prediction of the relative 123 I
latencies!. This metric is important for applications
that make decisions depending on the relative ordering
of nodes, for example, when updating routing table
entries. In related work [19], we have extended rrl to
capture themagnitudeof each rank misordering as well: 10'
swapping the rank of two nodes that atens apart
is less severe than when they ar@Oms apart. This
weighted rrl (wrrl) is computed by taking the sum of Raw Lateney (milliscconds)
the latency penaltiek; of node pairs ranked incorrectly, _
normalized over the worst case latency penalty. Finalf;69' 3. Frequency histogram of raw latency measurements between
. L 9 PlanetLab nodes.
the relative application latency penaltfralp) expresses
the percentage of additional latency that an application
will notice when using network coordinates for rank
ordering. It is approximated by summing the relative
penaltyl;; /1,; for all pairs that are incorrectly ranked. In - When we first implemented NCs, we found that
Section IV-A, we evaluate our filtering techniques withone samples, often orders-of-magnitude greater than
these application metrics and show that the results axpected, would periodically distort the entire coordinate
consistent with the behavior exhibited by the relativeystem. These instabilities resulted when raw latency
error. data was fed into the algorithm.

Note that the link latencyl;; is a time dependent An examination of a set of raw latency data shows rare
guantity because inter-node latencies are not fixed rarnt persistent samples orders-of-magnitude larger than
does the same link provide the same result with eattfte common case. We collected a set of latency data
observation. Instead of being a single quantity; is from 269 PlanetLab [17] nodes over three days starting
actually a distribution that depends on the characteristigkgy 2, 2005, totalingt3 million samples. PlanetLab is a
of the link. One can consider the distributidny; the collection of approximately 500 machines spread around
true latency Most NC evaluations have assumed thahe world, located primarily at universities and research
links returned the same measurement each time; in othedys. To gather the trace, each node measured the latency
words, that alll;;’s were equal for a given link. to another node with an application-level UDP ping once

We measureper-noderelative error instead oper- per second. We used application-level pings because we
link relative error. The distribution of per-node relativintend to eventually use measurements of existing traffic
error is the collection of errors for each node for all adis input, rather than extra explicit pings.
its observations. Measuring per-link error would assumeWe summarize the total distribution of measurements
that a static, scalar latency matrix exists against which \ire Figure 3. The data show that4% of the measure-
could compare coordinates after a number of iterationaents are greater than one second, which is longer than
Because our underlying network is changing, this matrithe common case even for inter-continental links. Instead
and hence this metric, cannot be computed. of a steady stream of measurements, the fact that many

Stable coordinates are particularly important when aneasurements are above the largest expected latency
application uses network coordinates and a coordinaigggests that many links may be experiencing serious
change triggers application activity. A stable coordinatelays that NCs must automatically incorporate. The
system is one in which coordinates are not changing ougtbad range of measurements severely curtails accuracy
time, assuming that the network itself is unchangingnd stability.

Thus, links may produce some distribution of observa- We examined individual links to confirm that they
tions, but as long as this distribution does not changeo exhibited similar behavior. Not only did the entire
neither should stabilized coordinates. We use the ratedtribution have a long tail, with most links below
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coordinate change several hundred milliseconds, but individual links had as
AT well. Figure 4 illustrates one representative link. It shows
ST that a significant number of observations extend beyond

to quantify stability. Our metric space, the numeratothe median (Figure 4, top) and that these infrequent
is in milliseconds and we measure change in this spameler-of-magnitude delays are spread over time (Figure
in seconds; thus, stability is ims/sec unless otherwise 4, bottom).

noted. Because of the long tail, the mean of the raw values



A A e A filter performed on each link from the PlanetLab trace.
20 T Each link consists of a series of observations; the relative
210“ i T error is the difference between the filter's prediction and
;5103 i 7 the next observation, divided by the next observation.
T ] We ran an experiment in which we varied the size of
: 12; i 1 the window and the percentile used to surmise the next

value. Using the three day trace, we applied different
filters to predict what the next observation would be and
e g Laterey (milissconds calculated the rel_ative error between e_ach prediction and
2500 . . . : . . . the true observation. We plot the relative error for all of
the links in the system as we vary the history sizend
20007 T keepp = 25 in Figure 5. The results show that a history
1500 | ] of only four observations achieves the best performance
(lowest error) with the fewest outliers. Using= 25,
the minimum with a history of four, resulted in slightly
lower error tharp = 50 for the MP filter.
" g Ry Although long histories do not perform substantially
o worse, intuitively it makes sense that longer histories do
Time (hours) not perform better: they are slow to adjust to any changes

. . in network conditions. That short histories perform well
Fig. 4. Histogram and scatterplot of raw latency measurements

from one PlanetLab node to another during a three day trade. 900d for three reasons: (1) they can be acqm'ted
Measurements vary by two orders-of-magnitude. Long latency pinffd3rough fewer rounds of observations, (2) they require

continue to occur throughout the trace. less state, and (3) they will be quickest to adjust to any
latency shifts.
In the previous experiment, we made the assumption

would not be a good predictor for future observationdat the magnitude of the long tail behavior of latency
Instead, the expected latency appeared to be predictdBRAsurements remains unchanged over time. In practice,
by taking a low percentile of some portion of thdhis may not be the case because the long tail is caused
previous observations. This expected latency is a betly artefacts, such as security policies implemented by
measure of what NCs should use as its approximatigff/ters and temporary route changes due to unstable
of the link latency, not the raw values. By giving NCBGP routing policies, which are themselves dynamic
a steadier input that is able to predict subsequent valiidshature. These changes may affect the efficiency of
with high accuracy, each link should experience low&p€ choser andh parameters over time. However, we

relative error and greater stability by exhibiting lesBelieve that changes to the magnitude of the long tail
coordinate change over time. occur at larger timescales, which we have not seen during

our experiments so far. An adaptive solution would be to

revisit the choice op and h periodically to ensure that

the MP filter remains a good predictor for future latency
Based on our analysis of link latencies, a percentiteeasurements.

of some window of previous observations appeared to

be a good predictor of future values. Statistically, thi8.- NCs with the MP Filter

is known as a Moving Percentile (MP) filter, a variant In order to compare NCs with and without the MP

on the Moving Median filter, and has been used to filtgitter, we built a simulator that accepted our raw ping

out heavy-tailed error in other disciplines.§.[9], [14]). trace as input and mimicked the distributed behavior of

It is a non-linear filter, which removes non-Gaussiaviivaldi. Through a comparison of running NCs on a real

noise and lets through low frequencies. MP filters exhibietwork and in our simulator, we found the simulator

edge preservation and are robust against noise impulsgsvided a high degree of verisimilitude.

A MP filter has two parameters: (1) the sizeof the Using the MP filter substantially improves both the

history window and (2) the percentijereturned as the accuracy and stability metrics. With the parameters that

prediction for the next observation. showed the best ability to predict subsequent samples
To examine the predictive effectiveness of the MR- taking the25" percentile of the previous four obser-

filter with different parameters, we examined how theations {.e., the minimum) — we compared NCs with
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IV. FILTERING WITH HISTORIES



10fF L L — ]
08 |- E E
w 06 T w T
8 6
04 | E E
02 E E
MP Filter ——
00 | _ NoFilter -——--- | . . 1
0.00 0.05 0.0 015 0.20 025 030 0 5 10 15 20
Median Relative Error 95™ Percentile Relative Error
10 F ! : — 10 F T [ —— 4
08 |- E 08 |- E
L 06 E L 06 E
8 6
04 | E 04 | E
02 E 02 E
00 - 1 1 1 ] 00 1 1 1 ]
0 10 20 30 40 50 10t 10? 10* 10° 10°
95" percentile Coordinate Chance Per Node (milliseconds) Instability (log scal€)
C = T T T T T T T T— T T ]
10 Sy - No MP Filter EX=x1
s S M 1 P MP Filter £
§ 10° |~ ] [ ] ] 8 -
21 KB Kl K s 0
§: 10 Sl Sl S SN S
2100 F B KB KB KB Sl S
% R R EE 3 KK
L ARSIl % S KE
10t KK MRS DR SN S
1 o KEel K Kde) Sl S
S
%0 @, W, W, B % @, B %
% % % B B
Raw Latency (milliseconds)
Fig. 6. Cumulative distributions of relative error (accuracy) and coordinate change (stability). The top two graphs show the median and

95" percentile relative error for each node, respectively; thus, some nodes commonly experience several times more error than others. The
third graph portrays that using the MP filter cuts instability per node in half for most nodes. The fourth graph shows a CDF of aggregate
coordinate change per second (stability). With the MP filter, each node moves by a little more than one millisecond per second. Without the
filter, spurious observations throw off all nodes’ coordinates, resulting in a long tail. The filter improves global stability in the worst case by
three orders of magnitude. The bottom graph shows how the MP filter only trims the problematic observations off of the end of the latency

measurements, leaving the remainder of the distribution intact. The histogram is of the four hour subsection of the trace.
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and without MP filtering. We ran NCs on a four hour
section of the trace and show cumulative distributions for
the second half of the run, eliminating start-up effects
(we examine the rate of start-up in Section V). We
measured per-node accuracy and system-wide stability
and summarize the results in Figure 6. The data show
that the MP filter at least doubles accuracy and stability
for most nodes. Its primary benefit, however, is that it
eliminates the periodic distortion of the entire coordinate
space that occurs with no filtering. This is shown through

History Size the reduction of the long tail of instability by three

. o . . . orders-of-magnitude. In the application we developed,
Fig. 5. Short histories of previous observations are sufficient 't% di . Id de of oth d
reduce the error in predicting the next latency observation. T ese |stort|on§ wou Cau_se a casc_:a eo Ot_ er updates
boxplots show the relative error of all of the links in the systeni0 occur and using the MP filter ameliorated this problem
They show that filters based on the most recent four observatiafigbstantially.
predict with the least error.

We also evaluated the efficiency of the MP filter in
terms of the application metrics capturing rank loss



TABLE |

described in Section 1I-B. We calculated the rrl, wrrl,
EXPONENTIALLY-WEIGHTED HISTORIES

and ralp metrics for all the nodes in our set. The results

show that the MP filter improves th&9!" percentile of Filter Median Relative| Instability

rrl by 70%, of wrrl by 44%, and of ralp by67% [19]. We : Error

conclude from this that applications using NCs to order MP Filter | 0.07 (—42%) | 415 (~47%)

nodes according to latency directly benefit from the MP No Filter | 0.12 (0%) 783 (0%)

_ a =002 | 0.27 (+125%) | 490 (—37%)

filter. o =0.10 | 2.48 (11960%) | 1907 (+143%)
(

=020 | 5.70 (+4650%) | 3783 (+383%)

B. Other Filtering Methods

Before turning to the non-linear MP filter, we con-
sidered two methods that are commonly used to smodtpdes use an EWMA filter with differing values of
out measurement error, thresholds and exponential av&$-compared to using no filter and using the MP filter.
aging. We also examined a confidence building methdde data show that even when an unconventionally low
specific to Vivaldi, which would appear to increas&alue fora is used,0.02, smoothing with an EWMA
coordinate convergence rates. Contrary to our initigiill results in lower accuracy than using no filter at all.
expectations, these methods had negligible impact ®Re outliers are not signifying a trend an EWMA should
accuracy or stability, and made conditions worse in sorfi@pture, but instead should simply be discarded.
circumstances. Confidence Building. The third potential improve-
Thresholds. Prior to examining the latency distribu-ment to NCs is particular to the Vivaldi algorithm itself.
tion, we first considered using fixed threshold to discatdnks with very low latency can prevent nodes from
extreme values. Dropping all values above a thresholddgcoming confident in their coordinates. This occurs
a simple method, with the added benefit that it requirééen the true latency between two nodes is beneath the
no state. Given the distribution of the entire trace (shoviecision of our latency measuring tools. When we first
in Figure 3), this method also removes the most extrerf@n Vivaldi on our local cluster without the MP filter, we
outliers, smoothing the process slightly. However, eaggw a fairly Normal spectrum of latency observations
link tended to show its own set of outliers: most link§etween0.4 and 1.2ms, and then a tail o6% of the
exhibited long tails, but the centering and length of thebservations above.2ms. Because the measurements
tail was different. For example, a cut-off that might workised UDP and because the machines had no other load,
for the general distribution would do nothing for outliergve attributed the spread to context switches and back-
in the link shown in Figure 4, where the common cag#found processes running on the machines. In essence,
is less thanl00ms. Early in our exploration, we tried these observations were below our software’s ability to
several thresholds before moving to more complex tectetect them accurately.
niques; we found only minimal stability and accuracy When run on a cluster with low latency, this jitter
improvement when used in isolation. has an adverse effect on the Vivaldi algorithm. It results
EWMA. A commonly used filter to smooth jitteryin high relative error (Figure 2, line 2) which in turn
data is the exponentially-weighted moving average. agdversely affects the update in confidence (line 4). For
captures a distribution’s general trend by including a@ixample, if two nodes currently have confidefcg and
previous observations and giving them an exponentialfpe sampler believes its neighbor igs away in the
declining weight:v; 11 = a x s + (1 — ) x v;, where coordinate space, a single sample3ofs will reduce
v, is the current value of the filter and,.; is the confidence by almosi%.
value after including observation The filter’'s behavior ~ To solve this problem, we introduced a margin of error
is controlled by one parameted, < o < 1, which thatwas allowed for each sample, a method weamaifi-
determines how much weight is given to the curreatence buildingIf the expected and actual measurement
observation. were within this margin of error, we considered them
We added a per-link EWMA to our simulator withequal. Because we found our measurement error rarely
the goal that it would capture changes in network coexceeded three milliseconds.{5%), we set the thresh-
ditions and dampen the outliers we had seen. We usgd to this value. This simple mechanism dramatically
conventional values far of 0.10 and0.20 and measured increased confidence in a low-latency environment.
the same four hour section of the trace as in previousTo examine the effects ofonfidence buildingwe
experiments. Table | shows the median value of tlian an experiment with three nodes on our local clus-
distribution of median relative error and stability whemer. They computed their coordinates by choosing one
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Fig. 7. By allowing for measurement error on low-latency Iinks',:ig' 8. Coordinates do not necessarily shift in the same direction

nodes in the same cluster can gain confidence in their coordina@&€" ‘time, nor do they rotate about the origin. We show how four
However, in a wide-area network, suppressing spurious, high latefigf€’s coordinates change over a three hour period. US West, US

observations has much greater impact than precise measuremergadi @nd China have shifted nearer to one another and the node in
low latency ones. Europe has a higher latency to all three.

node to sample every second, and we examined hgétween399 PlanetLab nodes [35]. Because of triangle
Vivaldi performed with and without allowing for mea-yjolations, any NC algorithm that refines its coordinate
surement error. Figure 7 shows h@anfidence building periodically, especially with every observation, will pro-
affects one node’s confidence over a ten minute intervglice coordinates that oscillate in a region — decreasing

Using confidence buildingthe node maintaind00%  stability — with the size of that region dependent on the
confidence after start-up. Without it, confidence wavegsze of the violation.

around 75%. There appear to be two lines WitNo 5, se of a latency filter greatly improved the sta-
Confidence Buildingecause the the node’s confidencin, and accuracy of a set of network coordinates. As
changes slightly with each measurement to its two neighy re 6 showed, use of the filter clipped the heavy tail
bors. Confidence followed the same pattern whether gfinsianility. However, the system’s coordinates are still
not the MP filter was used in this environment; thus, t anging at aboui00ms /sec. For an application using
filter does not alleviate the confidence problem on a loysvork coordinates, is all this movement necessary?
latency ne_twork. .. .Instead of being notified about slight changes in coordi-
~ We conjectured that when several nodes participatif@ses with every observation, most applications would
in a large-scale network were co-Iocate(’j in the sameater to be notified only when aignificant change
subnet, they would reinforce each others coordinates, s By designing the coordinate subsystem as a black
essentially creating a confident reference point for othgg, 14t only signals when there is significant change,
nodes. Surprisingly;onfidence buildingnly had a small .o can Jimit application updates that, in turn, limit
impact on the externally-visible metrics of accuracy anghyecessary application-level work. In our distributed
stability when run on a higher latency network. Whefaianase optimizer, for example, a coordinate change
using an MP filter, it further improved median relativeq g initiate a cascade of events, culminating in one or
error by 8.8% and stability by oqu2.3%. o more heavyweight process migrations. If the systems’

These results suggest theanfidence buildingnight .5 dinates have not changed significantly, there is no
be a useful technique if Vivaldi were run on a small clu§aa50n to begin this process. Of course, some appli-
ter. However, network coordinates are primarily usefilbiong would prefer a constant update: the subsystem
for large-scale networks, renderimgnfidence building ¢p,5uig output both a system-level coordinat, and an

and other efforts to improve the precision of small Me3nlication-level oneg,. Those in the former category
surements, including kernel timestamping, less importagt, ,id usee and the latter=
a S

than eliminating large spurious observations. L
g large sp Before considering how and when to update we

must ask: is it necessary to updaig at all? That is,
V. UPDATING APPLICATION-LEVEL COORDINATES  4¢tar some time, do coordinates cease to change relative
Violations of the triangle inequality with respect tdo one another, merely rotating about an axis, oscillating,
RTT measurements have been shown to be a commonarc-otherwise remaining stationary? The answer is no:
currence on the Internet due to Internet routing policiesoordinates do change, reflecting changes in the un-
A recent study found around8% triangle violations derlying network even over relatively short time-scales.



! . T T T divide a single data strearf = {so, s1,...,$,} into
g sp + T two sets (or windows)\Ws = {so,...,sr} and W, =
g st ' 7 {Sn—k,---,Sn}, that can be compared for statistically
;i al oo + T significant change using one of a handful of standard
g e, . techniques €.g.,rank-sum).
‘% E 4 The start window W, holds the initial values seen
g ] and thecurrent window W, slides to include only the

e most recent values. By creating two distributions out of

6 8 0 12 14 1 1B 2 the single stream, a change in the underlying stream
Average Triangle Violation (ms) .. .

can be detected. Initially, both windows are empty. As
Fig. 9. The average extent of a node’s triangle violations correlagach element; arrives, it is added téV, and W, until
strongly with its average stability, measurednivs per update using they are both of sizé:. When this size is reached, no
an EMWA (- = .71). This suggests that much coordinate change | t dded 16 d . slides t dd
— but not all, as Figure 8 illustrates — is unnecessary and can re elements are &_l e s an c slides 10 a
suppressed. s; and drops;_,_1. With each new element, the sets are
tested for difference. When the statistical test declares
the two windows to be different, ehange pointis said

. . . . . to have occurred. At this point, both windowk,; and
We illustrate this change in Figure 8 by showing ho%c are cleared and the process begins again. The well-

four nodes’ coordinates vary over time. The nodes ak . 2 .
- . . . .known tests Ben-Davickt al. examine in their work,
from four distinct regions. Their coordinates move in

a consistent direction over a three hour period, neithré?wever’ are all for one-dimensional data. The two tests

rotating nor remaining within one area. Instead, thive employed for multi-dimensional data are heuristics
example portrays that, should be updated over timeENERGY andReLATIVE below.
to sustain accuracy.

The fact thate, must be updated suggests a trade- o _
between the drawback of changing, which induces e present four heuristics that each attempt to in-
(perhaps unnecessary) application-level work am Ccrease §tab|I|ty_|n appllcatlon-leve_l coordinates without
accuracy. Our goal is to shift the line in Figure 6 (bottonf/€creasing their accuracy. The first twéysTem and
to the left, increasing stability, without moving the ling\PPLICATION, do not use windows, and the second, two
in Figure 6 (top) to the right, increasing error. RELATIVE and ENERGY, do. _

Examining the correlation between triangle violationSYSTEM- If the change irc; from one observation to the
and stability suggests that coordinate movement, whBgXt is greater than a threshotd updatec;. Thus, if
it is not due to an underlying network change, is due to 165 — Gl > 7,
these violations. Th|§ makes sense because the VIOIat!Peqscj _ 2. This heuristic is simple but suffers from a
mean that the coordinate cannot have an exact location . ) .

We show this correlation in Figure 9. pa_lthologlcal case: many changes ju_st under the threshold

We examined four heuristics that each attempt {B'ght oceur, which WOUI.d Ie_ad1 tq high error. .
updatec, at appropriate times: dampening applicatioﬁF)PL',[CATIOOIN t d t?e a;ppllc?r?ons |flea’of th?. co&rdlnat?_
updates while retaining the MP filter's low relative errorczfi'oi r?\)llsre g?ec?srel;ori? e system's, notify the appli-
Two are based on simple thresholds and two on sliding ™~ ’
windows of previousc, coordinates. Before explaining |ca — 5l > T,
the heuristics, we explain how we transform streams I‘éft @ =z
system-level coordinate updates into two sets that can

tested for significant coordinate change.

OI%. Application Update Heuristics

This heuristic is a simple way of expressing
tR&t an update should occur if a drift in one direction
occurs; it permits oscillations beneath

REeLATIVE . This is the first of the two window-based

A. Detecting Change with Windows heuristics.ReLATIVE measures the local relative distance

In the context of streams of samples entering @ compared with our nearest known neighboand
database, Ben-David, Gehrke, and Kifer propose yrdate the application if the change is larger than an error
algorithm to detect when the stream has undergonera RELATIVE averages each of its sets of coordinates by
significant change [10]; their algorithm is similar td@king their centroicC(1). It computes, if
one proposed by Kleinberg for detecting word bursts IC(Ws) — C(Wo)|l
in text streams [11]. The kernel of their idea is to IC(Ws,) — 7|

> €,
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let ©; = C(W.). This heuristic exhibits three good [
properties: updates are relative to the node’s locale,
computing the centroid is inexpensive, afV;) can o 2
be cached. The approximate nearest neighbor is Iearne% L 2
through a comparison with each latency sample, whereg %
. . 20 |- L
the node learng; and a new neighbor through gossip. 3
ENERGY. The last heuristic uses a statistical test that  °f Instbillty
specifically measures the Euclidean distance between . RegveEnr >~ . 1+ 1 1log
two multi-dimensional distributions [28]. It is based on T e
the energy distancee(A, 5) betﬂgen two finite sets —— T 010
A={ai,...,an },B={b1,...,bn, }: S0 - T
X7 ~ 0.08
a0 ¥ - Xemmmm S O < — )
]
2 ol jooe 2
niy N2 2 T
ning 2 — — 5 4
(A, B) = > > @ b £ of 10% &
ny+ne \ nine =1 j=1 8
10 o 0.02
1 ny N1 1 No MNo — N
R — _> J— _> _ PR— . 1 1 1 1 1 1 1 1 |
n% Z Z lai —ajl| ng Z Z I16i = b5 701 02 03 o4 05 06 o7 o8 oo ¥
i=1j=1 i=1j=1 Relative: Threshold

Using this statistic, we can determine the divergen€&- 10. Instability and Median Relative Error for varying threshold

e(Ws,We) >,
D. Window-based Heuristics

let ¢, = C(W.). While computing this heuristic is more Becayse the window-based heuristiggLaTiveE and
computationally intensive thaReLATIVE, the difference ENERGY, are more complex, with their two parameters of
is negligible for the small windows we used. window size and threshold, we examined their behavior
first. We conjectured that, as the threshold for update
increased, fewer updates &f would occur, leading to
C. Summary of Application-Update Results greater stability and perhaps reduced accuracy.

To examine how these four heuristics affected stabilit To examine how the thresholdsande; affectENERGY

and accuracy from an application’s viewpoint, we imple_nd RELATIVE, respectively, we ran an experiment where

mented them in our simulator and used the same trate varied the value of the threshold and kept v_v_lndow
e constant. We recorded accuracy and stability and

gggure 10 shows the median for both the distribution of
median relative error per node and of instability. The
results summarize the last two hours of the four hour
[Face, as in previous experiments.
The data establish th&eLATIvE exhibits a near-linear
« As expected, increasing the threshold required f@fcrease in stability with increasing threshold. Thus, as
application update increases stability but also d&g|ative requires more and more movement relative to
creases accuracy. The window-based heuristics ste distance to the nearest neighbor, updates steadily
ceed in substantially increasing stability before arjecline. The increase iENERGY'S stability is curved
significant decline in accuracy begins. but has no knee: it too exhibits a measured decline in
« Large windowsge.g.,between32 and512 samples, coordinate change as the threshold to update increases.
improve both stability and accuracy. Very larg@oth heuristics fall in the same range of relative er-
windows, however, cause too few updates to occupr, with ENercy exhibiting a more gradual decline as
decreasing accuracy. thresholds increase. However, the decline in accuracy for
« The heuristics that do not use windows can increaggth heuristics does not expend a substantial increase
stability only at the immediate expense of accuragy stability, especially folRELATIVE, where instability is
and are not robust to minor parameter changes. cut in half without any noticeable reduction in accuracy.

the window size and threshold parameters affected th
metrics.

The following summarizes the results of our compa
ison of application-update heuristics:
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0.10
0.08
0.06
0.04
0.02
0.00

Accuracy begins to decline foENERGY after 7 = 8

and for RELATIVE after ¢, = 0.3. These are the most
conservative parameters that still grant an increase in
stability, with 8% for RELATIVE and 34% for ENERGY.

We kept window size at 32 for this experiment.

Our second experiment with the window-based heuris- |,
tics was to establish reasonable boundaries for window_ 0
size. Unlike the per-link MP filter, using a large win-
dow is acceptable because windows are appended t
with every observation, regardless of the link. However, 0
similar to using a large filter, a trade-off exists in which
very large windows are slow to react to true changes ing 8%
underlying network conditions. Ep &%

We ran an experiment in which we kept the threshold -g o
for application-update constant while we varied window g o Ty,
size exponentially. We monitored accuracy and stability I N N A
as before, and also observed how frequently application Window Size
_uPdates occurred 0_Ver t'm?' This last numbe_r __ thﬁb. 11. Median Relative Error, Instability and Application Updates
is, the number of times, is changed per unit time per Second with varying window size fRELATIVE andENERGY.

— is interesting because even though stability might

be increased, it might not necessarily correlate with

a decline in application notifications. Instead, stability

could be increasing through smaller updates that ocdllpre state. Using the parameters we established for
at the same frequency. Because a cost exists in notify¥y§idow size from the previous experiment, we compared
an application with a coordinate change, we wanted four heuristics as we varied the update threshold.
ensure that both instability and update frequency wekthlike ENERGY and RELATIVE the windowless heuristics
decreasing. In Figure 11, we show the same metrigguld only directly trade off accuracy for stability and
as the previous experiment together with the percetd a limited “sweet spot,” one which might change with
of the 269 nodes that changed their values fgy each @ different trace.

second. The data show that not only do large windows ( We show the same metrics, median relative error,
25 — 29) modestly improve accuracy, but also they resuind instability, as we vary threshold in Figure 12.
in a steady increase in stability and decline in updafé low thresholds, whenc; is updated after only a
frequency. Across a wide range of window sizes, updatg®all movement from its previous valugysTem's and

are both less frequent and cause less movementAPRPLICATION'S performance remain similar to the raw
aggregate, achieving two of the goals of the applicatioMP filter. With a large thresholdg; is rarely updated,
update heuristics. At a window size 928 for example, leading to high error. Only at = 16 do the two
RELATIVE'S median relative error i§%, its instability heuristics perform in the same range as the window-
5ms/sec, while causing onlyl% of the nodes to be based ones. Because tipping in either direction results in
updated per second. This is4a% increase in accuracy poor performance on one of the metrics, we conclude the
and a two orders-of-magnitude improvement in stabiligdded complexity and state of using one of the window-
compared to the original algorithm. Because all larg@ased heuristics is worthwhile.

window sizes afforded a substantial improvement in the

metrics, we chose the smallest of the3®, to make a

conservative comparison with the window-less heuristigs comparison to the Raw MP Filter

and to use in our PlanetLab implementation. We used the

threshold values gathered from the previous experimentOur primary goal in introducing the application-level
heuristics was to further improve stability while main-
taining accuracy. In Figure 13, we show how the two
window-based heuristics achieve that goal. Using the pa-

The window-based heuristics have the disadvantaganeters established above, accuracy remains unchanged
that they are slightly more complex than the windowlesghile RELATIVE and ENERGY shift the entire distribution
ones,SysTeEM and AppLICATION, and that they require of coordinate updates into a more stable regime.

Median Relative Error

Phstability
3

Per Secon:
a
RS

T T TTT

E. Windowless Heuristics
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Fig. 12. Effect of varying threshold for all four heuristics. TheFig. 13. Comparison of application-level suppression to Raw MP
window-based heuristics maintain high accuracy and stability. Tié@tering. Both window-based heuristicRELATIVE and ENERGY
simple threshold-based ones can only trade-off accuracy for stabiktycceed in keeping relative error low while greatly increasing coor-
and are much more sensitive to changes in the threshold parametiémate stability.

50 | ,*: 1.00
G. Discussion ol [ Jos
% 20| 4 0.60 %
Application-level accuracy and stability depend on £ | Jow &
both knowing when to updaté, and what to set it ! B
to. A substantial component of the success of the two - 0%
window-based heuristics is their setting = C(W,). 0 N P

8 16 32 64 128 256

One could argue that a simple threshold scheme might 4App”mn,mmid:Thrmld

achieve similar performance if it too used the centroid of

a collection of recent system-level coordinates. Howevé&ig. 14. Instability and Median Relative Error with varying threshold
while it is true that allReLaTivE and ENERGY doO is for APPLICATION/CENTROID.

set¢, to the centroid of recent values for, achieving

the properrate for these updates — knowing when to

change — is a property simple thresholds have difficultly VI. PLANETLAB EXPERIMENT

performing. In order both to verify our simulator and to confirm

To test this claim, we modified\rprLicATION to set that our findings were not limited to our latency trace, we
¢, to be the centroid of a window of the pa82 implemented a version of NCs that could be run on a real
coordinates (the same size tiatercy and RELATIVE network. This version uses application-level UDP pings
use above). In our experiment, we varied the thresholdaat input, the same as our trace. Each node started with a
which updates were made and again monitored accuratyall neighbor set and gossiped one address with every
and stability. As the data in Figure 14 portray, thisample. Nodes sampled from their neighbor set in round-
combined AprLICATION/CENTROID iS more stable than robin order at five second intervals. We added the MP
APPLICATION and SysTem but, like the two window- filter and theENERGY application-level update heuristic
less heuristics, it is not robust against slight changestm our implementation. We used a window &% and
parameters and has high stability only at the expenserof 8 as suggested by the parameter space exploration
good accuracy. in simulation.
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In order to ensure a valid comparison between running 1o F Energy;MPFm;rjf?i; [ —
NCs with our enhancements and without, we ran them /';WMPFM) e
on the same set of PlanetLab nodes at the same time, \ .
using different ports. One set of nodes used the MP  °¢ Rav o Fiter
filter and one did not; both useENERGY. Because each  “ (.|
node outputtedz; and ¢, with each sample, we could
monitor the effects of the filter and the update heuristic
separately. We ran this pair of coordinate systems for oot
four hours on 270 PlanetLab nodes on June 24, 2005.
We have subsquently been using the live coordinate
system for significantly longer experiments on our work ~ '01 \
on streaming databases. sl T
The results of the real-world experiment confirm those
of our simulations. We show the relative error and % ;
stability for the second half of the experiment in Figure = o4}
15. The data show that the MP filter reduces error and ] Energy+No Filter
instability and the application-update heuristic further
increases stability. We also examined how latency and ™" Ct—— ' ' ' ' ' '
. . . 0 100 200 300 400 500 600 700 800
update filters affected these metrics over time, shown Instability
in Figure 16. The data show that after a half hour
convergence period, using the MP filter aBERGY Fig. 15. Cumulative distribution of relative error and instability of
result in a much smoother and more accurate metMES running on PlanetLab. The data show that with the MP filter
. .only 14% of the nodes experienced%'" percentile relative error
space on a real wide-area net\_NO_rk' The data Conﬂrgm—:ater than one, whilé2% of those without the filter didENERGY
that both enhancements have distinct effects on the té@npened the filter's updatest % of the time it fell below even the
metrics and that both are required for a stable amdhimum instability of the raw filter. The enhancements combine to
accurate space from an application perspective. reo_luce tr_lg median of thes'" percentile relative error b§4% and
L . . . of instability by 96%.
After a close examination of all coordinate disruptions
during the PlanetLab experiment, we discovered a source
of much of the worst error. Most real-time low pass
filters add delay in order to incorporate future values. Outetric space [15], a series of different approaches have
MP filter outputted a value for every input, regardlessmerged. In their initial work, called Global Network
of the history length: it produced thé" percentile of Positioning, a coordinate space was built in two stages:
the current state it was storing. Thus a pathological caf@st, a collection of well-knowrdandmarksplaced them-
occurs when an extreme outlier is the first observatigelves in a vector space through all-pairs ping measure-
for a particular link: even with the filter, this observatioments; second, each joining node measured its distance
is what is used. In fact, this was the case for the fite all of the landmarks and picked a coordinate that
largest node displacements in the PlanetLab experimetihimized the error to all of them. This approach does
and the echoes of these disruptions often continued fast allow for a smooth evolution of the space over
minutes. To compensate for this, NCs could wait until me, nor is it decentralized. However, it did establish
sufficient number of samples are in the filter. that, even with the error induced by triangle inequality
In simulation, we experimented with waiting until theviolations, a high-quality space was possible. Light-
second sample on a link to return an observation. Thisuses [18] Mithos [30], and NPS [16] extended the
greatly reduced early instability, but, because our set la@hdmark approach by using multiple local coordinate
nodes was constant, had only limited impact after stagiystems, by building the space through preferring to
up. In a long-running system where nodes periodicalijeasure nearby neighbors, and through a hierarchical
enter and leave, adding a delay to the filter woulgkchitecture, respectively. More recently, Costa al.
increase its robustness against these pathological casgseloped PIC, another landmark scheme, which runs a
Simplex solver on each node to minimize error [3]. PIC
readjusts coordinates through periodically re-running this
A. Synthetic Network Coordinates solver process and includes a test to defend its coordinate
Since Ng and Zhang provided the first in-depth exystem against malicious participants. Gabal. initially
amination of how to embed inter-node latencies in @roposed Vivaldi [4] and Dabekt al. later improved

Energy+No Filter 1

1 1 1 1 1 1
1.0 1.5 2.0 25 3.0 35 4.0

95" Percentile Relative Error

y+MP Filter .

/
{ .
{
/ ;
/ \ i
/
|
h
{
h
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Raw MP Filter

VIl. RELATED WORK



14

40 ' ' ' ' T RawNoFiler while a long-running coordinate space solves them pro-
=1 RE AV r—— actively. Meridian, for example, finds the nearest overlay
WA Ereey PRI 2 node {.e., one running Meridian) to an arbitrary point in
the Internet through a large set of pings in direct response
to an application-level request [31]. In the same vein,
ol oo, A/ i Shanahan and Freedman examine the efficacy of network
T S P embeddings for finding nearby servers for unmodified
00 . . . . . . . clients [25]. The choice between solving these problems
0005 10 15 20 25 30 35 40 reactively or pro-actively appears to be an application-

Time (hours)

100 : : , : : : : specific decision.

951" Percentile Relative Error

05 -

B. Stabilizing Network Coordinates

We used Szekely and Rizzosnergystatistics as one
heuristic to find the distance between the start and current
coordinate windows [28]. Rubinfeld and Servedio pro-
vide an alternate algorithm for determining thdistance
in a metric space for two distributions [24]. However,
their tests are more focused on high dimensions and
reducing the number of samples required for comparison.
Fig. 16. Relative error and instability vary with time on PlanetLalin recent work, Zech and Aslan independently proposed
;Tﬁu?eafitgf’v':f: are the median error and mean instability for teneq siatistic, also calleghergy which differs from the

statistic we used in its inclusion of a problem-dependent

scaling function embedded within the statistic [33].

In another effort to stabilize NCs, de Launas al.

its accuracy in two-dimensions witheight which was modify the Vivaldi to prevent oscillations in the presence
intended to explicitly capture the latency to a high speed triangle inequalities [6]. They introduce a factor that
link [5]. Shavitt and Tankel's Big-Bang Simulations isasymptotically dampens the weight given to each new
an embedding technique similar to Vivaldi, althougmeasurement, regardless of its source. While this factor
it models a potential force field instead of a massloes mitigate oscillations, it prevents the algorithm from
spring system [26]. Kleinberg has developed a theoreticapting to changing network conditions as the pull of
grounding for network embeddings, analyzing how toew measurements approaches zero.
embed coordinates with arbitrarily low errors [12].

Network embeddings were developed partially in re- VIII. CONCLUSION
sponse to the growing interest in topologically-efficient |n a real-world deployment, no fixed, single-valued
overlay routing. CAN's multi-dimensional space [21]jatency matrix exists. Instead, nodes see a stream of la-
in particular, has motivated work on network-awargncy values along each link. When these raw values are
overlays and on using a node’s network coordinates @ed to embed hosts into a metric space, the coordinate
its logical CAN coordinate [22], [32], [34]. In recentsystem they create is fragile.
theoretical work, Abraham and Malkhi have examined Common techniquese.g., excluding “large” values
routing strategies made possible through the existeng®y using exponentially-weighted filters do not create a
of network embeddings [1]. Pietzueh al. explore how yseful set of latencies. Instead, a short non-linear low
they can be used for operator placement in distribute@ss filter, the moving percentile filter, both removes
streaming databases [20]. extreme values and is agile enough to allow the output

In contrast, other work has tried to solve the same saginal to accurately reflect changes in the underlying
of problems, including thé:-nearest neighbor problem,network. Additionally, the benefit of using more precise
without establishing a coordinate space, arguing thaeasurement tools is small relative to eliminating signal
their maintenance is a burden and that these coordinextrema with a low pass filter.
spaces exhibit higher error than a customized mechaWe introduced update filters to manage triangle vio-
nism. In essence, this class of work solves the neighbations and examined the effect of four heuristics that
and routing problemseactively through a spike in determine how and when to update the application-level
activity in response to an application-driven demandpordinate. The two heuristicENERGY and RELATIVE,

Mean Instability

3

*-
K-
2o

X %
DX %
EXX
DX }K
DXX

o
o
2 X
m>y( E
X %

5 20 25 30 35 40
Time (hours)

o
o
o
o
[N
o
[N



15

that used a change-detection algorithm based on sliding] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti.
windows best determined when to make the update.
Additionally, using the centroid of a collection of recent
coordinates set the application-level coordinate to [fy
highly accurate value. We confirmed the results from
our simulations with an implementation on PlanetLab.
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